
Higher-Order Information Matters: A Representation Learning
Approach for Social Bot Detection

Min Gao
Shanghai Key Lab of Intelligent

Information Processing, College of
Computer Science and Artificial

Intelligence
Fudan University
Shanghai, China

mgao21@m.fudan.edu.cn

Qiang Duan
Department of Information Sciences

and Technology
The Pennsylvania State University
Abington, Pennsylvania, United

States
qduan@psu.edu

Boen Liu
Division of Natural and Applied

Sciences
Duke Kunshan University

Kunshan, China
bl263@duke.edu

Yu Xiao
Department of Information and
Communications Engineering

Aalto University
Espoo, Finland
yu.xiao@aalto.fi

Xin Wang∗
Shanghai Key Lab of Intelligent

Information Processing, College of
Computer Science and Artificial

Intelligence
Fudan University
Shanghai, China

xinw@fudan.edu.cn

Yang Chen∗
Shanghai Key Lab of Intelligent

Information Processing, College of
Computer Science and Artificial

Intelligence
Fudan University
Shanghai, China

chenyang@fudan.edu.cn

Abstract
Detecting social bots is crucial for mitigating the spread of misinfor-
mation and preserving online conversation authenticity. State-of-
the-art solutions typically leverage graph neural networks (GNNs)
to model user representations from social relationships and meta-
data. However, these approaches overlook two key factors: the
similarity of a user and her neighbors, as well as the coordinated
behaviors of social bots, resulting in a suboptimal detection per-
formance. To address these issues, we propose HyperScan, a novel
representation learning method for social bot detection. Specifically,
we introduce three effective learners to capture pair-wise, hop-
wise, and group-wise relations. HyperScan learns pair-wise user
representations based on social relations and user features. It then
enhances user representations by building hop-wise interactions
across the learned pair-wise user representations for capturing the
structure-level proximity information. Subsequently, it models user
representations by constructing higher-order (group-wise) relations
derived from user profiles, tweets, and social relations to capture
the feature-level proximity knowledge. By leveraging hop-wise
interactions and higher-order relations, HyperScan significantly
improves bot detection performance. Our extensive experiments

∗Xin Wang and Yang Chen are Corresponding Authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761162

demonstrate that HyperScan outperforms state-of-the-art meth-
ods on three benchmark datasets. Additional studies validate the
robustness and effectiveness of each component of HyperScan.

CCS Concepts
• Computing methodologies → Machine learning; • Informa-
tion systems→ Information systems applications.

Keywords
Bot Detection; Long-Range Dependency; Higher-Order Networks

ACM Reference Format:
Min Gao, Qiang Duan, Boen Liu, Yu Xiao, Xin Wang, and Yang Chen. 2025.
Higher-Order InformationMatters: A Representation LearningApproach for
Social Bot Detection. In Proceedings of the 34th ACM International Conference
on Information and Knowledge Management (CIKM’25), November 10–14,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3746252.3761162

1 Introduction
Online social networks (OSNs) [36], such as Twitter/X, Facebook,
and Weibo, have amassed a large number of users and have become
an integral part of people’s daily lives. With the increasing popu-
larity of these platforms, social bots [9, 24, 47, 55] have emerged
as automated accounts designed to mimic human behavior and
interact with users. Some of them pose threats to our social and
political lives. For instance, social bots have been used to spread
fake news, steal users’ private information, and manipulate online
topics [7, 9, 55]. The surge in artificial intelligence technologies
has given rise to advanced social bots and amplified these issues,
making social bot detection an imperative task [23, 29].
In the early stage of social bot detection, researchers predominantly
employed simple feature-based techniques to identify social bots.
These early detection methods [11, 51] relied on manually crafted

https://orcid.org/0009-0002-9374-1459
https://orcid.org/0000-0001-7832-1937
https://orcid.org/0009-0000-7134-7595
https://orcid.org/0000-0002-4517-3779
https://orcid.org/0000-0002-9405-4485
https://orcid.org/0000-0003-4749-3060
https://doi.org/10.1145/3746252.3761162
https://doi.org/10.1145/3746252.3761162
https://doi.org/10.1145/3746252.3761162


CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Min Gao et al.

features and lacked the flexibility to cope with the evolving sophis-
tication of bot behaviors. Recent studies [17, 31, 44, 68] on graph
deep learning for bot detection have achieved success by utilizing
graph neural networks (GNNs) to capture user attributes (such as
user metadata and tweet content) and social structures together
based on original relational data (see Figure 1(a)).
While most existing methods focus on pair-wise interactions, they
often overlook two key factors for detecting bots: (1) The similar-
ity of a user and her neighbors. As depicted in Figure 1(c), social
bots show consistently high similarities with their neighbors, even
across multiple hops. In contrast, humans present relatively lower
and more dispersed feature similarities. This pattern suggests that
bots tend to engage in long-range interactions, indicating a strong
covert strategy by spanning multiple hops rather than direct con-
nections. Such a strategy not only expands their influence but
also reduces the chance of being detected. However, previous stud-
ies [17, 21, 67] have overlooked the similarity of a bot user and her
neighbors, which limits their effectiveness in accurately identifying
such bots. (2) Higher-order (group-wise) interactions. Higher-order
(group-wise) interactions exist ubiquitously in OSNs and are indis-
pensable for capturing group-wise behaviors among users [1, 3].
Social bots often operate in a coordinated fashion [12, 15, 71], reflect-
ing a form of collaboration that traditional pair-wise graph-based
methods fail to capture. This is because previous studies [19, 44, 46]
have ignored higher-order (group-wise) relations among users (see
Figure 1(d)), resulting in the ineffective identification of certain
coordinated behaviors. To tackle the above limitations, we need to
design a method that can simultaneously consider the similarity
of a user and her neighbors along with higher-order relations, to
obtain an informative user representation for achieving accurate
bot detection. Specifically, our method not only needs to identify
the similarity of a user and her neighbors, but also needs to learn
higher-order relations to understand more comprehensive user in-
teraction patterns. To achieve these goals, two major challenges
arise: CH1 How to effectively utilize the information of the similarity
of a user and her neighbors based on the user’s social relations? CH2
How to effectively model and learn higher-order (group-wise) relations
among users?
To address the above challenges, we propose a novel method called
HyperScan for social bot detection. HyperScan considers the similar-
ity of a user and her neighbors as well as higher-order interactions,
and it learns user representations by modeling pair-wise, hop-wise,
and group-wise (higher-order) relationships together to leverage
knowledge from both the structure-level and feature-level proxim-
ity among users. For addressing the challenge CH1, we first build a
multi-relation graph and learn the pair-wise user representations
utilizing a relational graph neural network (R-GCN) [54]. Subse-
quently, we construct the hop-wise interactions among the learned
pair-wise user representations and employ the message-passing
mechanism on the hop-based user representations. Such a hop-wise
design enables independent modeling of the information of the sim-
ilarity of a user and her neighbors across different hops, allowing
for learning refined structural proximity knowledge from the long-
range interactions. To tackle the challenge CH2, we construct a
hypergraph, a powerful structure to model higher-order (group-
wise) interactions from the representation space, and propose a
group-wise learner that learns group-wise user representations by

(c) Similarity of human/
bot users and their neighbors 

(a) OSN Example

(d) Higher-Order Relation Modeling 

SATAR
SEBOT

RGT
Ours

(b) Detection Performance (F1-Score)

95.16

70.31
87.49

88.16

Figure 1: Motivation of HyperScan design. (a) is an online so-
cial network example, where green signifies humans and red
denotes bots. (b) displays the detection performance of some
representative baselines and our method on the TwiBot-20
dataset. (c)Wemeasure the average cosine similarity between
each node and its 𝑘-hop neighbors (𝑘 = 1 to 6). The results
reveal a clear discrepancy in how feature similarity varies
with structure distance between humans and bots. Welch’s
t-test (𝑝 < 0.001) confirms the statistical significance, high-
lighting the need for models that can robustly capture such
signals. (d) depicts the example of group-wise relationships
among users.
leveraging feature-level proximity knowledge among users. We
further incorporate a cross-attention mechanism to effectively fuse
user representations from both pair-wise and group-wise relations.
This novel fusion makes HyperScan more robust in handling com-
plex relations, including both pair-wise and group-wise relations.
Additionally, HyperScan is flexible enough to employ different hy-
pergraph neural networks (HNNs), enhancing its adaptability in
various scenario settings. The main contributions of this work are
as follows:
• We introduce an approach to effectively utilize higher-order in-
teractions among users, addressing shortcomings of previous
studies. We effectively construct higher-order relations by lever-
aging user metadata, user tweets, and social structure informa-
tion. To our best knowledge, we are the first to make good use
of higher-order (group-wise) relations for social bot detection,
which provides an effective structure to comprehensively identify
group-wise relations among users.

• We propose HyperScan, a novel bot detection method that con-
siders the similarity of a user and her neighbors as well as higher-
order (group-wise) relations. HyperScan uses effective learners to
learn pair-wise, hop-wise, and group-wise relations. HyperScan
captures pair-wise user representations by considering multiple
social relations between users. By investigating the hop-wise
interactions across pair-wise user representations, HyperScan
enhances user representations by learning structural proximity
knowledge within the long-range interactions. The group-wise
learner further captures feature-level proximity and acquires in-
formative user representations for detecting bots. Additionally,
HyperScan employs the cross-attention mechanism to enhance
user representation learning by modeling the complicated corre-
lations across pair-wise and group-wise perspectives. By leverag-
ing these techniques, our method is flexible and robust enough
for effective bot detection in various scenarios.

• We conduct extensive experiments on three representative public
datasets, and the evaluation results demonstrate the superior



Higher-Order Information Matters: A Representation Learning Approach for Social Bot Detection CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

performance of HyperScan over state-of-the-art methods. The
effectiveness of each component of the HyperScan design is also
verified. These results indicate that our method is both general
and robust in different scenarios, highlighting the importance of
leveraging both the information of the similarity of a user and her
neighbors, along with higher-order relations, for bot detection.

2 Related Work
In this section, we first review existing representative studies for so-
cial bot detection in Section 2.1 and then outline the key techniques
that inspired the design of HyperScan, including long-range depen-
dency in graph learning in Section 2.2 and higher-order modeling
and learning in Section 2.3.

2.1 Social Bot Detection
We review existing representative social bot detection techniques
and classify them into two main categories: (1) feature-based meth-
ods and (2) deep learning-based models.
Feature-Based Methods. The rise of social bots on social me-
dia has prompted researchers to turn to machine learning algo-
rithms, particularly those focused on feature engineering meth-
ods [4, 51, 53, 67]. For example, Raffel et al. [51] designed T5 and
built user features from tweets and user descriptions. Yang et al. [67]
presented SGBot, which primarily extracted user features from pro-
file metadata and employed random forest classifiers for identifying
social bots. Additionally, Liu et al. [41] began to focus on the social
structure and extracted user features from social community infor-
mation. However, most of them did not pay attention to the social
structure. Even though some approaches have begun to consider
the social structure, they typically analyzed them individually and
thus overlook the importance of the inconsistency of user features
and the social structure.
DeepLearning-BasedMethods.Recent deep learning-basedworks
have shown success in identifying bots [6, 17, 19, 44, 68]. Several
studies [16, 19] have utilized advanced sequence modeling and
natural language processing techniques for social bot detection.
For example, Feng et al. [19] developed SATAR, which integrated
Word2Vec and Long Short-Term Memory (LSTM) to encode user in-
formation, including profiles, tweets, and social relations. Similarly,
Fazil et al. [16] introduced DeepSBD, which utilized Convolutional
Neural Network (CNN), Bidirectional Long Short-Term Memory
(BiLSTM), and a hierarchical attention architecture to identify so-
cial bots. Recently, GNN-based methods [6, 17, 21, 46, 57, 68] have
been applied to bot detection studies, significantly enhancing social
bot detection. Recent studies on social bot detection have explored
diverse modeling strategies to capture complex user relationships
and community structures [17, 21, 44]. For example, Feng et al. [17]
presented RGTmodel, which modeled relation and influence hetero-
geneity using a relational graph transformer and semantic attention
networks. Liu et al. [44] introduced BotMoE, which employed a
community-aware Mixture-of-Experts (MoE) layer to automatically
assign users to different communities and leveraged the correspond-
ing expert networks. Yang et al. [68] employed structural entropy to
model hierarchical community structures with contrastive learning.
Shi et al. [57] enhanced user features by considering the differences

between a user’s features and neighborhood features. These neigh-
borhood features were based on a hypergraph structure from tweet
content and were utilized in GNNs for bot detection. Most existing
methods emphasized pair-wise user connections and ignored the
higher-order (group-wise) correlations, failing to leverage group-
wise interactions with deep learning techniques. Although some
have noticed the higher-order correlations, they have solely uti-
lized tweet features to explore these correlations [57]. In contrast,
our approach captures richer group-wise interactions by building
a hypergraph from multi-modal user data and integrating repre-
sentations from both pair-wise and hop-wise perspectives, thereby
enabling deeper semantic modeling for effective bot detection.

2.2 Long-Range Dependency in Graph Learning
Long-range dependency in graph learning [8, 14, 63] refers to
the challenge of effectively capturing interactions between distant
nodes in a graph. Traditional GNNs suffer from over-smoothing
when propagating features across multiple hops, making it diffi-
cult to learn long-range dependencies. Recent solutions include us-
ing hierarchical pooling [13], transformer-based architectures [66],
and decoupled GNNs [56, 70] to enhance long-range information
flow while mitigating over-smoothing. Among them, decoupled
GNNs [56, 70] first pre-compute the linear aggregation of k-hop
neighbors to generate node features and then utilize theMulti-Layer
Perceptron (MLP) for each node without considering the graph
structure during training and inference. For example, HopGNN [8]
employs the message-passing mechanism among pre-processed
multi-hop neighbor features inside each node to overcome the over-
smoothing issue. In this work, we treat the similarity of a user and
her neighbors across multiple hops as a form of long-range de-
pendency, i.e., hop-wise feature dependency, by building hop-wise
interactions and employing GNNs to enhance user representations.

2.3 Higher-Order Information Modeling and
Learning

Higher-order information modeling and learning refer to the tech-
niques and methodologies used to understand and predict complex
interactions beyond simple pair-wise relationships. Hypergraphs
are commonly employed to depict higher-order (group-wise) con-
nections [1, 2]. Unlike traditional graphs, hypergraphs allow hyper-
edges to connect any number of vertices [2, 40, 69], enabling them
to naturally model higher-order relationships among entities. This
feature makes hypergraphs valuable in various domains, such as
social networks and biological networks [2, 42]. Hypergraph repre-
sentation learning aims to project the nodes of a hypergraph into
a latent space while preserving the structural and relational prop-
erties of the network. Various methods have been developed for
hypergraph representation learning [10, 22, 27, 33, 37]. In this work,
we leverage a hypergraph to model the higher-order (group-wise)
relationships among users and employ HNNs [22, 27] to learn infor-
mative user representations, subsequently improving bot detection
performance.

3 Our Approach: HyperScan
In this section, we first give some preliminary information and
define our research problem in Section 3.1. Then, we introduce our



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Min Gao et al.

approach, HyperScan, in Figure 2. HyperScan contains three mod-
ules: (a) feature encoder (in Section 3.2), (b) hybrid-order relation
learner (in Section 3.3), and (c) bot detector (in Section 3.4). Firstly,
the feature encoder captures user features from user tweets and pro-
file information. Secondly, the hybrid-order relation learner obtains
informative user representations based on the user social network
and extracted user features. Specifically, the hybrid-order relation
learner includes four sub-modules: (b1) pair-wise learner, (b2) hop-
wise learner, (b3) group-wise learner, and (b4) cross-attention sub-
module. The pair-wise, hop-wise, and group-wise learners obtain
pair-wise, hop-wise, and group-wise user representations, respec-
tively. The cross-attention module effectively fuses both pair-wise
and group-wise user representations together. Finally, the bot de-
tector is designed for the final prediction.

3.1 Preliminaries
Given a multi-relation social graph G = (V, E,R,X) = (A,R,X),
whereV is the set of nodes with cardinality𝑛, E ⊆ V×V indicates
the set of edges with cardinality𝑚, and R denotes the set of various
edge relations with cardinality 𝑟 . The binary adjacency matrix
A ⊆ {0, 1}𝑛×𝑛 has the (𝑖, 𝑗)-th entry 𝑎𝑖 𝑗 = 1 if 𝑣𝑖 is connected to
𝑣 𝑗 , and vice versa. X is the feature matrix where the 𝑖-th row 𝑥𝑖
is the 𝑑0-dimensional feature vector for node 𝑣𝑖 . In this scenario,
nodes represent users, including both humans and bots, and edges
represent different types of relationships between users. Moreover,
we build a hypergraph HG based on the k-nearest neighbor (kNN)
search algorithm [27, 52]. The hypergraph HG has the same node
set V and a new hyperedge set EH with size 𝑚ℎ . The detailed
process of hypergraph construction can be found in Section 3.3.3.
The user labels Y = {0, 1}, classifying 0 as humans and 1 as bots.

Problem (Social Bot Detection). Given a graph G = (V, E,R,
X) = (A,R,X) and labels Y for the nodes, we aim to learn a
function 𝑓 that captures informative user representations to classify
social bots from humans.

3.2 Feature Encoder
Previous studies have investigated various types of features from
the perspectives of property [19], behavior [21], and network struc-
tures [19]. These features have been demonstrated to be effective
in distinguishing bots from humans. Therefore, we consider these
multi-modal information and extract user features by categorizing
them into two types: textual, and property features. Ourmethods for
extracting these features are described in the next two paragraphs.
Textual Encoder. Inspired by [19, 21], we employ the RoBERTa
model1 [43] to transform user descriptions and tweet contents
into two semantic feature vectors, referred to as 𝑋des and 𝑋twt,
respectively. These semantic feature vectors provide us with rich
information that enables a more accurate understanding of user
language characteristics and differentiates between humans and
social bots. Subsequently, we encode 𝑋des and 𝑋twt with a linear
layer followed by a leaky-ReLU activation function 𝜙 , defined as
𝑋𝑑 = 𝜙 (𝑊𝑑𝑋des + 𝑏𝑑 ) and 𝑋𝑡 = 𝜙 (𝑊𝑡𝑋twt + 𝑏𝑡 ), respectively.𝑊𝑑 ,
𝑊𝑡 , 𝑏𝑑 , and 𝑏𝑡 are all learnable parameters.
1The RoBERTa model, an advanced variant of the BERTmodel, is able to learn powerful
contextual information by pre-training on large-scale text data. Here, we utilize it to
generate general textual features.

Property Encoder. To capture user property features, we utilize
both user profiles and network structures. Inspired by previous
studies [21, 68], we extract the numeric features 𝑋num, such as
“num_follower” and “num_following”, aswell as categorical features
𝑋cat, like “protected” and “verified”, from user data. These features
are commonly used in prior studies [19, 21, 68]. Similarly, we apply a
fully connected layer and a leaky-ReLU activation 𝜙 to capture user
representations, including numeric features 𝑋𝑛 = 𝜙 (𝑊𝑛𝑋num + 𝑏𝑛)
and categorical features 𝑋𝑐 = 𝜙 (𝑊𝑐𝑋cat + 𝑏𝑐 ).𝑊𝑛 ,𝑊𝑐 , 𝑏𝑛 , and 𝑏𝑐
are all learnable parameters.
Based on the above feature encoding, we obtain an initial node
feature 𝑋𝑖𝑛 = [𝑋𝑑 , 𝑋𝑡 , 𝑋𝑛, 𝑋𝑐 ], and the 𝑋𝑖𝑛 is fed into the input of
the hybrid-order relation learner module.

3.3 Hybrid-Order Relation Learner
To capture both lower-order (pair-wise) and higher-order (group-
wise) relations together and obtain informative user representations,
it is important to build implicit higher-order relations according to
explicit lower-order relations and the above-encoded user features.
Hence, we develop a hybrid-order relation learner to cope with
complicated relations among humans and bots and learn informa-
tive user representations. Specifically, we first design a pair-wise
learner for lower-order (pair-wise) relations in Section 3.3.1 and a
hop-wise learner to gather multi-hop user features based on social
structures in Section 3.3.2. Then, we build a group-wise learner
for higher-order (group-wise) relations in Section 3.3.3. Finally, we
leverage the cross-attention mechanism to cope with complicated
relations and learn informative hybrid-order user representations
in Section 3.3.4.

3.3.1 Pair-wise Learner. Given the multiple relations between
users, we design a multiple relational graph learning module to
capture such pair-wise heterogeneous connections. Specifically,
we employ the relational graph neural network (R-GCN) [54] as
the core technique of our pair-wise user representation module.
R-GCN has been demonstrated to be effective in capturing multiple
relations for graph data. We utilize 𝑙 stacked relational graph convo-
lutional layers to cope with the complex multi-relation graphs and
learn informative embeddings for modeling pair-wise connections.
For the 𝑠-th (𝑠 = {1, 2, · · · , 𝑙 − 1}) layer of R-GCN,

𝑥
(𝑠+1)
𝑖

= 𝜎
©­«𝑊 (𝑠 )

0 𝑥
(𝑠 )
𝑖

+
∑︁
𝑟 ∈R

∑︁
𝑗∈N𝑟

𝑖

1
𝑐𝑖,𝑟

𝑊
(𝑠 )
𝑟 𝑥

(𝑠 )
𝑗

ª®¬ , (1)

where 𝑥𝑖 and 𝑥 𝑗 represent the extracted features of node 𝑖 and node
𝑗 , respectively. N𝑟

𝑖
denotes the set of neighboring nodes of node 𝑖

under the relation 𝑟 ∈ R, and 𝑐𝑖,𝑟 = |N𝑟
𝑖
| indicates a normalization

factor. 𝑊 (𝑠 )
0 and 𝑊

(𝑠 )
𝑟 are learnable weight matrices. The final

pair-wise user representations are denoted as 𝑋𝑝 = 𝑓𝑝 (𝑋𝑖𝑛) with
pair-wise learner 𝑓𝑝 and extracted user feature 𝑋𝑖𝑛 .

3.3.2 Hop-wise Learner. After aggregating information across
multiple relations, it is necessary to incorporate the information
of a user and her neighbors to enhance user representations with
richer semantics. Inspired by [8], we propose a hop-wise learner.
Specifically, we first pre-compute multi-hop user representations
𝑋𝑝 from the pair-wise user representations with 𝑋

𝑙ℎ
𝑝 = 𝐴𝑙ℎ𝑋𝑝 for



Higher-Order Information Matters: A Representation Learning Approach for Social Bot Detection CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Textual 
Encoder

Property 
Encoder

(a) Feature Encoder

D
ecision L

ayer

human

bot

R-GCN Layer

Hypergraph HNN Layer

a

4

1
2
3

1

b 3
4

…

(b) Hybrid-Order Relation Learner

…

(b4) C
ross A

ttention

(c) Bot Detector

Following
Follower

…
Self-loop

(b1) Pair-wise Learner

(b3) Group-wise Learner

kNN

Dataset

Graph

!𝑨 𝑿𝒍𝒐𝒘
!𝑨 𝟐 𝑿𝒍𝒐𝒘
!𝑨 𝟑 𝑿𝒍𝒐𝒘

𝑿𝒍𝒐𝒘

(b2) Hop-wise Learner

Social Network

User Profile

User Tweets

Human

Bot
Social Relation

Figure 2: Overview of HyperScan framework. It contains three modules: (a) feature encoder; (b) hybrid-order relation learner
with (b1) pair-wise learner, (b2) hop-wise learner, (b3) group-wise learner, and (b4) cross attention module (detailed architecture
is illustrated in Figure 3); and (c) bot detector for final prediction.

𝑙ℎ-hop. Then, we construct a hop-wise graph 𝑔ℎ derived from the
user social network and reshape the multi-hop user representations
through a linear layer combined with a trainable hop-wise vector
𝑉ℎ , as follows:

𝑋ℎ = [𝑊ℎ𝑜𝑝𝑋𝑝 + 𝑏ℎ𝑜𝑝 ] +𝑉ℎ, (2)

where𝑊ℎ𝑜𝑝 and 𝑏ℎ𝑜𝑝 are learnable parameters. Considering the
intrinsic co-occurrence of multiple hop features within each user,
we seek to leverage GNNs to effectively model multi-hop user
representations. Consequently, we employ GNNs to encapsulate
the interactions among these multi-hop user representations via
𝑋ℎ = 𝑓ℎ (𝑔ℎ, 𝑋ℎ). Here, we utilize the GAT [61] as 𝑓ℎ to capture hop
interactions. Specifically, we adopt a scaled dot-product attention
mechanism, which improves efficiency and captures cross-hop de-
pendencies in our task. This computing process can be represented

as 𝑋ℎ𝑜𝑝 = 𝐴ℎ𝑋ℎ , where 𝐴ℎ = Softmax
(
QℎK𝑇

ℎ√
𝑑ℎ

)
Vℎ , Qℎ = 𝑋ℎWℎ

𝑄
,

Kℎ = 𝑋ℎWℎ
𝐾
, andVℎ = 𝑋ℎWℎ

𝑉
, with learnable matricesWℎ

𝑄
,Wℎ

𝐾

andWℎ
𝑉
, respectively. Here, the Softmax is the non-linear activation

function, 𝑑ℎ denotes the dimension of 𝑋ℎ , and the K𝑇
ℎ
represents

the transpose of Kℎ . Furthermore, we have examined other GNN
architectures like GCN and GraphSAGE [28, 39] to model hop inter-
actions, which achieved similar results, indicating the adaptability
of such design. Then, we apply a mean fusion strategy to derive the
final hop-wise user representations 𝑋ℎ = mean(𝑋ℎ𝑜𝑝 ). Similarly,
other fusion mechanisms were also explored, but no significant en-
hancements were observed. After hop interaction, we obtain more
distinguishable user representations for the following group-wise
relation modeling.

3.3.3 Group-wise Learner. Considering the synergistic nature
of social bots (social bots interact with neighboring partners and
conspire as a group to achieve common goals), we aim to capture

the group-wise correlations by employing the hypergraph structure
to represent higher-order interactions among users. A hypergraph
is an extension of a graph that facilitates modeling complex higher-
order interactions [22]. Therefore, how to construct a hypergraph
is critical to model the higher-order interactions between users. To
enhance the expression power of our model, we introduce the idea
of skip-connection, which concatenates the extracted user features
and the learned hop-wise user representations together, formulated
as 𝑋 = 𝑋𝑖𝑛 + 𝑋ℎ = 𝑋𝑖𝑛 + 𝑓ℎ (𝑓𝑝 (𝑋𝑖𝑛)). Based on these features
and representations, we use the 𝑘-nearest neighbors (kNN) algo-
rithm [27, 52] to construct a hypergraphHG by grouping each user
with its closest 𝑘 − 1 neighbors based on user features, including
user metadata, tweets, and social relations. The generated hyper-
graph HG contains nodes representing users (including humans
and bots) and hyperedges connecting subsets of similar users. We
also explored alternative 𝑘-hop based construction techniques, but
they did not show notable improvements.
We employ representative HNNs [22, 33, 65] to learn informa-
tive group-wise user representations from the hypergraph HG .
Specifically, we take the learned total user representations 𝑋 =

tanh(𝑊ℎ𝑋 +𝑏ℎ) and the constructed hypergraphHG as the inputs
to the group-wise learner, where𝑊ℎ and 𝑏ℎ are learnable param-
eters. Many popular HNNs, such as HGNN [22], UniSAGE [33],
and UniGIN [33], could be utilized in this component. For simplic-
ity without losing generality, we take the HGNN model as our
HNN backbone. We follow the two-step message-passing scheme
to propagate information on hypergraphs. During the first stage,
each hyperedge representation is aggregated from the connected
node representations. The second stage involves updating the node
representations with their associated hyperedge representations.



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Min Gao et al.

Therefore, the process of hypergraph representation can be formu-
lated by

𝑋𝑔 = 𝐷
−1/2
𝑖

𝐻𝑊𝐷−1
𝑒 𝐻𝑇𝐷

−1/2
𝑖

𝑋Θ, (3)

where𝐷−1/2
𝑖

and𝐷−1
𝑒 denote the inverse square root of the node de-

gree matrix and the inverse of the hyperedge degree matrix, respec-
tively.𝐻 stands for the incidence matrix.𝑊 is the weight parameter
vector to be learned during the training process. Θ represents the
hypergraph convolution function used for node feature filtering.𝑋𝑔
corresponds to the learned final group-wise user representations,
which can be denoted as 𝑋𝑔 = 𝑓𝑔 (𝑋 ) with the group-wise learner
𝑓𝑔 and user features 𝑋 .

3.3.4 Hybrid Representation. Given the disparity in embed-
ding spaces of user representations from different perspectives, we
have developed a hybrid user representation module leveraging
cross-attention. This module adeptly captures the complex correla-
tions and mapping relationships between pair-wise and group-wise
user representations through a multi-head cross-attention mecha-
nism [60]. Since we only consider two types of user representations,
we revise the original architecture to suit our model. Specifically,
the cross-attention architectures for both pair-wise and group-wise
representations share the same building blocks and only differ in
terms of the Query, Key, and Value matrices. The architecture for
pair-wise representations is illustrated in Figure 3. For group-wise
representations, the sole modifications involve setting the Query
input to 𝑋𝑔 and replacing the inputs for the Key and Value with 𝑋𝑝 .

Multi-Head Cross Attention
Q

Xp Xg

m

Linear
K

Linear
V

Linear

Add & Norm

Multi-Head Cross Attention
Q

Xg

m

Linear
K

Linear
V

Linear

Add & Norm

Zp

…

Figure 3: Illustration of the architecture of cross attention
module for pair-wise user representations.

Specifically, both pair-wise user representation 𝑋𝑝 and group-wise
user representation 𝑋𝑔 capture valuable knowledge within their
respective encoding spaces. Therefore, each of them could integrate
complementary information from each other. For simplicity, we
take the fused pair-wise representation as an example. Initially, the
pair-wise user representation learns correlations and mapping rela-
tionships with the group-wise representation, acting as the Query,
while the group-wise representation serves as the Key and Value
within the multi-head cross-attention mechanism. The computation
for the Query, Key, and Value matrices is given by Q𝑝𝑐 = 𝑋𝑝𝑊𝑄

𝑝
𝑐
,

K𝑔
𝑐 = 𝑋𝑔𝑊𝐾

𝑔
𝑐
, and V𝑔

𝑐 = 𝑋𝑔𝑊𝑉𝑔
𝑐
. Here,𝑊

𝑄
𝑝
𝑐
,𝑊𝐾

𝑔
𝑐
, and𝑊𝑉𝑔

𝑐
are

learnable parameters. The cross-attention mechanism can be for-
mulated as

A𝑝
𝑐 = Softmax

©­­«
Q𝑝𝑐 K

𝑔𝑇
𝑐√︃

𝑑K𝑔
𝑐

ª®®¬V
𝑔
𝑐 , 𝐴𝑝 =

[
A𝑝
𝑐 | 𝑐 ∈ {1, 2, . . . , ℎ}

]
, (4)

where Softmax denotes the non-linear activation function, 𝑑K𝑔
𝑐

refers to the dimension of Key matrix K𝑔
𝑐 , and K𝑔𝑇

𝑐 represents the
transpose ofK𝑔

𝑐 . The 𝑐 refers to the 𝑐-th attention head, [·] denotes
the concatenation operation, ℎ is the number of attention heads,
and 𝐴𝑝 represents the cross-attention-based representation from ℎ

attention heads.
The output learned in this manner then serves as the new Query
with the same group-wise representations as the Key and Value
matrices. A feed forward network subsequently acts as a key-
value memory. Furthermore, we incorporate residual connection
and layer normalization over the output of each multi-head cross-
attention module to enhance the training process. This can be
represented as

𝑍𝑝 = LayerNorm
(
𝑋𝑝 +𝐴𝑝𝑊𝑝

)
, (5)

where 𝑋𝑝 is the pair-wise user representation, 𝐴𝑝 is the learnable
cross-attention weights, 𝑊𝑝 is the trainable weight matrix and
LayerNorm denotes the operation of layer normalization.
Similarly, for the group-wise representation 𝑋𝑔 , we generate the
Query with 𝑋𝑔 itself, while the Key and Value matrices are formed
from the pair-wise representation 𝑋𝑝 , defined as Q𝑔𝑐 = 𝑋𝑔𝑊𝑄

𝑔
𝑐
,

K𝑝
𝑐 = 𝑋𝑝𝑊𝐾

𝑝
𝑐
, and V𝑝𝑐 = 𝑋𝑝𝑊𝑉 𝑝

𝑐
. Here, 𝑊𝑄

𝑔
𝑐
, 𝑊

𝐾
𝑝
𝑐
, and 𝑊

𝑉
𝑝
𝑐

are learnable parameters. The cross-attention weights can then

be calculated by A𝑔
𝑐 = Softmax

(
Q𝑔
𝑐 K

𝑝𝑇
𝑐√︃

𝑑K𝑝
𝑐

)
V𝑝𝑐 , where 𝑑K𝑝

𝑐
refers

to the dimension of Key matrix K𝑝
𝑐 , K

𝑝𝑇
𝑐 represents the trans-

pose of K𝑝
𝑐 , and 𝑐 denotes the 𝑐-th attention head. Then, with

ℎ attention heads, we can obtain 𝐴𝑔 =
[
A𝑔
𝑐 | 𝑐 ∈ {1, 2, . . . , ℎ}

]
. Fi-

nally, the final cross-attention-based representation can be obtained
by 𝑍𝑔 = LayerNorm

(
𝑋𝑔 +𝐴𝑔𝑊𝑔

)
, where 𝑋𝑔 represents the group-

wise user representation, 𝐴𝑔 denotes the learnable cross-attention
weights,𝑊𝑔 is the trainable weight matrix, and LayerNorm stands
for the layer normalization operation. We concatenate 𝑍𝑝 and 𝑍𝑔
to obtain the final user representation via 𝑍 =

[
𝑍𝑝 , 𝑍𝑔

]
, where [·]

denotes the concatenation operation.

3.4 Bot Detector
Based on the final user representation 𝑍 , HyperScan utilizes a fully
connected layer and subsequently applies an activation function
sigmoid. The final predicted user label 𝑌 can be determined by
𝑌 = sigmoid(𝑊𝑜𝑍 +𝑏𝑜 ), where𝑊𝑜 and 𝑏𝑜 are learnable parameters.
Finally, we train our model in a supervised learning process that
minimizes the binary cross-entropy loss along with the L2 norm
regularization

L = −
∑︁
𝑖∈𝑌

[𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )] + 𝜆
∑︁
𝑤∈𝜃

𝑤2, (6)



Higher-Order Information Matters: A Representation Learning Approach for Social Bot Detection CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

where𝑦𝑖 and𝑦𝑖 are the ground-truth label and the predicted label of
node 𝑖 , respectively. 𝜃 denotes all trained parameters in the model,
and 𝜆 is the regularizer parameter.

4 Experiments and Analysis
In this section, we perform an extensive empirical evaluation of Hy-
perScan under various scenarios. Our experiments seek to answer
the following questions:
RQ1: How effective is HyperScan for social bot detection?
RQ2: How do HyperScan’s components affect its performance?
RQ3: How does HyperScan perform under different hyperparame-
ter settings?
RQ4: Can HyperScan learn more discriminative node representa-
tions, and how well does it generalize under varying training data
sizes?

4.1 Experiment Setup
Dataset Information.We evaluated the effectiveness of Hyper-
Scan on three representative real-world datasets for social bot de-
tection tasks: TwiBot-20 [20], TwiBot-22 [18], and MGTAB-22 [58],
which are widely used in [6, 17, 21, 32, 44, 50]. TwiBot-20 contains
229,580 accounts extracted from Twitter and their following and
follower interactions. TwiBot-22 contains a heterogeneous Twitter
network with 4 types of entities and 14 types of relations. MGTAB-
22 consists of 10,199 accounts and 7 types of relations and exhibits
high-quality annotation. The statistics of datasets are presented in
Table 1. Table 1: Statistics of datasets

Dataset #Nodes #Humans #Bots #Edges #Relations

TwiBot-20 229,580 5,237 6,589 227,979 2
TwiBot-22 1,000,000 860,057 139,943 170,185,937 14
MGTAB-22 10,199 7,451 2,748 1,700,108 7

Baselines. We compare the performance of our model against the
following representative baseline models.
• Feature-based methods: T5 [51] extracts features from tweets
and descriptions, and then utilizes fully connected layers paired
with nonlinear activation functions to identify bots. FriendBot [4]
explores user features from network, content, and temporal per-
spectives and utilizes machine learning models to detect bots.
SGBot [67] primarily extracts user features from profile metadata
and employs random forest classifiers for bot detection.

• Deep learning-based methods: GAT [61] uses an attention
mechanism during themessage-passing process. HGT [30] adopts
the relative temporal encoding (RTE) strategy for better heteroge-
neous graph learning. SimpleHGN [45] is a simple and effective
HGNN architecture that pre-computes the neighbor aggregation
and combines a Transformer-basedmodule to fuse semantic infor-
mation. SATAR [19] is a self-supervised representation learning
framework that simultaneously leverages semantics, properties,
and structural information for specific users. RGT [17] adopts
relational graph transformers and semantic attention networks
for representation learning and bot detection. SEBOT [68] in-
troduces structural entropy to capture hierarchical community
structure information for bot detection in a contrastive learning
manner.

Evaluation Metrics. Following [17, 19, 68], we evaluate the per-
formance of each model using four metrics, including accuracy,

precision, recall, and F1-score, which are widely used in binary
classification tasks.
Implementation Details. We report the mean test performances
over 5 trials, with the same training/validation/testing split of
70/20/10 as [21], [18] and [58] for a fair comparison. All features
are normalized. The dimension of the node representation is 256.
The layers of R-GCN, GAT, and HGNN are configured to be 2.
We perform a grid search on the learning rate 𝜂 in a range of
{1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3}. To avoid over-fitting, we
apply L2 regularization with weight_decay 𝜆 = 5 × 10−4. We use
EasyGraph [26] to build graphs and adopt PyTorch [48] and Py-
Torch Geometric [25] to implement all the models and optimize
them with the Adam optimizer [38]. We conducted all experiments
on a Linux server equipped with the Intel(R) Xeon(R) Gold 6142
CPU @ 2.60GHz, 376GB of memory, and 64 CPU cores.

4.2 Detection Performance (RQ1)
We benchmark the performance of HyperScan in bot detection
against representative baselines. The detection results are reported
in Table 2. We highlight several findings after analyzing the results:
• HyperScan achieves the best performance across all four metrics
on the TwiBot-20 dataset. For the TwiBot-22 dataset, HyperScan
achieves the best accuracy and is a runner-up for other metrics.
For the MGTAB-22 dataset, HyperScan obtains the best accu-
racy, precision, and F1-score. Given that each dataset presents a
unique scenario, like TwiBot-22 with more nodes and MGTAB-
22 featuring higher-quality annotation, these results indicate
that our method is both general and robust in different scenar-
ios, highlighting the significance of leveraging hop-wise feature
interactions and higher-order information.

• We notice that several baseline models, like SGBot [67], GAT [61],
SimpleHGN [45], RGT [17], and SEBOT [68] attain relatively
high scores in specific metrics. However, their performances
are notably inconsistent across various datasets and even vary
among different metrics on the same dataset. For example, RGT
excels in terms of accuracy and F1-score, SEBOT achieves higher
precision, while SGBot stands out in recall on the TwiBot-20
dataset.

• HyperScan surpasses other feature-based baselines across four
metrics by considering the hop-wise feature information, high-
lighting the significance of integrating graph structure-related
design to effectively detect social bots. Compared with some ad-
vanced deep learning-based methods, HyperScan exhibits better
results in accuracy, precision, and F1-score because it models
complex social interactions from a newly introduced higher-
order perspective, indicating that such group-wise interactions
could further leverage structural information and provide new
knowledge for social bot detection.

4.3 Ablation Studies (RQ2)
Besides comparing with baseline methods, we also design seven
variations of HyperScan by removing or replacing one specific
component to assess the effectiveness of different components. The
variations are as follows:
• M1 (w/o Hop-wise Learner): removing the hop-wise learner in
HyperScan.



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Min Gao et al.

Table 2: The performances (mean ± stdev) of all methods on three datasets. The best-performing method is highlighted in
bold, while the second-best performance is underlined. “-” indicates the corresponding method is not scalable or could not be
applied due to the absence of some raw data.

Category Method TwiBot-20 TwiBot-22 MGTAB-22

Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall Accuracy F1-Score Precision Recall

Feature-based
T5 65.18±0.75 49.53±3.02 68.14±1.80 39.74±4.17 72.09±0.63 21.14±1.42 64.14±0.80 12.07±2.13 89.23±0.86 79.11±3.14 81.95±5.23 77.21±8.34

FriendBot 74.00±1.68 78.46±0.12 71.49±0.03 87.64±0.03 - - - - - - - -
SGBot 81.50±0.25 84.75±0.21 76.50±0.20 95.00±0.35 75.13±0.02 36.79±0.13 73.14±0.07 24.57±0.12 90.83±0.51 82.95±1.51 86.51±2.58 79.72±1.76

Deep learning-based

GAT 81.23±1.69 83.66±1.54 80.69±0.52 88.42±0.79 80.14±0.62 56.05±0.98 75.65±1.34 40.65±1.28 85.02±1.02 70.04±3.69 64.49±4.25 76.41±2.71
HGT 85.31±0.46 87.31±0.67 84.32±0.96 90.14±0.72 74.90±0.15 40.12±0.93 68.24±2.15 27.59±3.06 89.60±2.01 82.25±2.03 81.04±0.70 84.23±0.84

SimpleHGN 85.33±0.33 87.81±0.31 84.27±0.23 92.60±0.48 75.42±0.36 46.23±1.02 73.14±2.27 33.10±1.69 91.30±1.30 84.86±2.76 85.67±3.19 84.17±2.99
SATAR 58.61±0.27 70.31±0.21 59.98±0.85 81.38±2.46 - - - - - - - -
RGT 86.61±0.24 88.16±0.38 84.16±0.63 90.37±1.46 76.59±0.74 43.27±1.06 74.89±0.26 31.03±0.17 88.36±0.43 80.14±1.46 80.15±2.07 80.06±0.07

SEBOT 86.07±0.35 87.49±0.23 84.92±0.13 91.57±0.27 - - - - 90.75±1.28 82.15±2.43 82.74±2.93 81.61±0.34

Ours HyperScan 93.88±1.40 95.16±1.04 95.18±1.31 95.16±1.27 91.57±0.19 52.43±0.52 74.70±1.08 40.38±0.36 93.01±0.07 85.93±0.14 89.94±0.33 82.26±0.16

3 5 8 10
Hyperedge size k

80

85

90

95

100

Pe
rfo

rm
an

ce

F1-Score
Accuracy

(a) Different sizes of hyperedge 𝑘

32 64 128 256
Embedding size d

80

85

90

95

100

Pe
rfo

rm
an

ce

F1-Score
Accuracy

(b) Different embedding sizes 𝑑

0.00010.0005 0.001 0.005
Learning rate 

80

85

90

95

100

Pe
rfo

rm
an

ce

F1-Score
Accuracy

(c) Different learning rates 𝜂

3 5 8 10
Hyperedge size k

80

85

90

95

100

Pe
rfo

rm
an

ce

F1-Score
Accuracy

(d) Different sizes of hyperedge 𝑘

32 64 128 256
Embedding size d

75

80

85

90

95

100

Pe
rfo

rm
an

ce

F1-Score
Accuracy

(e) Different embedding sizes 𝑑

0.0001 0.0005 0.001 0.005
Learning rate 

75

80

85

90

95

Pe
rfo

rm
an

ce

F1-Score
Accuracy

(f) Different learning rates 𝜂

Figure 4: Performance of HyperScan on different datasets w.r.t different settings of hyperparameters. (a)-(c) for TwiBot-20
dataset and (d)-(f) for MGTAB-22 dataset, respectively.

Table 3: Ablation study on datasets reveals that each compo-
nent impacts and enhances performance. Our model Hyper-
Scan (M0) outperforms all other variants.

Settings TwiBot-20 TwiBot-22 MGTAB-22

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

M0 (Ours) 93.88±1.40 95.16±1.04 91.57±0.19 52.43±0.52 93.01±0.07 85.93±0.14
M1 (w/o Hop-wise Leaner) 90.62±0.51 89.98±1.02 88.25±3.12 48.27±1.09 91.85±2.43 84.27±1.09
M2 (w/o Group-wise Leaner) 90.50±0.73 92.85±0.71 87.92±0.85 49.08±0.62 88.25±2.15 84.18±1.14
M3 (rep HNN w/ UniSAGE) 90.04±0.17 93.57±0.31 87.73±2.51 50.50±1.23 89.73±2.41 84.50±1.23
M4 (rep HNN w/ UniGIN) 90.49±0.65 93.09±0.30 89.65±1.30 50.04±0.76 91.65±0.26 85.04±0.77

M5 (rep CA w/ Con.) 91.23±0.01 93.38±0.01 89.48±0.74 50.35±0.39 89.65±1.57 84.04±1.09
M6 (rep CA w/ Avg.) 89.24±0.09 90.64±0.25 87.94±1.36 48.86±0.51 87.65±1.04 84.04±0.46

M7 (rep CA w/ Con.+ReLU) 90.46±0.15 92.62±0.62 86.76±1.28 48.31±0.94 88.64±1.03 83.97±0.34

• M2 (w/o Group-wise Learner): removing the group-wise learner
in HyperScan.

• M3 (rep HNN w/ UniSAGE): replacing the HNN backbone with
the UniSAGE in the group-wise learner in HyperScan.

• M4 (rep HNN w/ UniGIN): replacing the HNN backbone with the
UniGIN in the group-wise learner in HyperScan.

• M5 (rep CA w/ Con.): replacing the cross attention module with
the concatenation operation in HyperScan.

• M6 (rep CA w/ Avg.): replacing the cross attention module with
the averaging operation in HyperScan.

• M7 (rep CA w/ Con.+ReLU): replacing the cross attention module
with the concatenation operation followed by a ReLU layer in
HyperScan.

From the results in Table 3, we can make the following conclu-
sions: (1) Removing each component (M1-M2) would reduce the
detection performance because the design of key components of
HyperScan contributes to the final detection performance, indicat-
ing the importance of considering the information of the similarity
of a user and her neighbors, as well as the higher-order knowl-
edge for bot detection. (2) We replace the HNN backbone in the
group-wise learner with representative HNNs like UniSAGE and
UniGIN (M3-M4). The observed decreased performance indicates
that the HNN backbone could be adept at capturing such higher-
order interactions by our group-wise learner. (3) We replace the
cross attention module with simple fusion manners by adopting
concatenation, averaging, and concatenation followed by a ReLU
layer, respectively (M5-M7). We notice that the performance of
these three variants decreases, which highlights the effectiveness of
the cross attention module in capturing the underlying correlations
between both pair-wise and group-wise user representations for
final detection performance.



Higher-Order Information Matters: A Representation Learning Approach for Social Bot Detection CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

4.4 Sensitivity Analysis (RQ3)
In this section, we perform a sensitivity analysis of critical hyperpa-
rameters in HyperScan, namely hyperedge size 𝑘 , embedding size
𝑑 , and learning rate 𝜂. Figure 4 presents the outcomes on different
datasets.
Effect of hyperedge size 𝑘 . To evaluate the impact of the size
of each hyperedge 𝑘 on model performance, we conduct experi-
ments with𝑘 values spanning [3, 5, 8, 10]. Figure 4(a) and Figure 4(d)
present the detection performance under different values of 𝑘 with
all other hyperparameters fixed. It can be noted that the proposed
HyperScan method delivers the best performance on the TwiBot-20
dataset at 𝑘 = 5 and on the MGTAB-22 dataset at 𝑘 = 8. This indi-
cates that an appropriate 𝑘 effectively simplifies the higher-order
structures, allowing our model to capture effective group-wise in-
teractions for enhanced generalization.
Effect of embedding size 𝑑 .We study the influence of embedding
sizes (from 32 to 256) on the performance of social bot detection. All
other hyperparameters are fixed, except for the embedding size. The
results are shown in Figure 4(b) and Figure 4(e). One can observe
that the performance enhances with larger embedding sizes for
both datasets. This improvement could be attributed to the fact that
larger embedding sizes allow HyperScan to handle more complex
social structures and learn more informative user representations.
Effect of learning rate 𝜂. To evaluate the impact of the learning
rate on model performance, we conducted experiments using a
range of learning rate values from 0.0001 to 0.005. Figure 4(c) and
Figure 4(f) show the detection performance with varying learn-
ing rates 𝜂 with all other hyperparameters fixed. We noticed that
an overall improvement in performance for both datasets as the
learning rate increases. Notably, HyperScan achieves the best per-
formance with minimal fluctuations at a learning rate of 𝜂 = 0.005
on the TwiBot-20 dataset, while it performs less effectively at
𝜂 = 0.0001. For the MGTAB-22 dataset, the best performance is
achieved at 𝜂 = 0.001. This highlights that an appropriate learning
rate could accelerate the convergence of our model and ensure
stable performance.

4.5 Visualization & Generalization (RQ4)
In this section, we visualize the user representations of the TwiBot-
20 dataset generated by HGT and HyperScan using t-SNE [59].
Nodes with the same ground-truth labels are in the same colors.
From Figure 5, one could observe that our method effectively differ-
entiates between humans and bots, whereas HGT has a large partial
overlap, highlighting that HyperScan learns more distinguishable
user representations than HGT.

Human
Bot

(a) HGT

Human
Bot

(b) HyperScan
Figure 5: Visualization of user embeddings generated by (a)
HGT and (b) HyperScan on the TwiBot-20 dataset. Users are
colored by their labels.

We further examine the generalizability of our model by adjusting
the training ratio on the TwiBot-20 dataset, as depicted in Figure 6.

Notably, using just 50% of the training data, HyperScan outper-
forms other baselines like SGBot and RGT, confirming its strong
generalization. Additionally, our findings reveal that more edges
and features contribute to enhanced performance, indicating that
both factors are beneficial for detecting social bots.

0.85

0.90

0.95

La
be

l

0.85

0.90

0.95

Ed
ge

10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Data Percentage

0.85

0.90

0.95

Fe
at

ur
e

Accuracy
F1-Score

Accuracy
F1-Score

Accuracy
F1-Score

Figure 6: Generalization of the proposed model with varying
training ratios.

5 Conclusion and Future Work
Social bot detection is an important task in OSNs, which could pre-
vent the adverse effects of malicious bots on user experience and
platform security. Existing solutions focus on the lower-order (pair-
wise) relations and ignore the higher-order (group-wise) relations
among users, causing unsatisfactory detection performance. To fill
this gap, this paper proposes HyperScan, a novel representation
learning approach for social bot detection. HyperScan first learns
pair-wise user representations by considering multiple relations
and integrates hop-wise interactions across pair-wise user repre-
sentations. Subsequently, HyperScan learns group-wise user repre-
sentations by constructing group-wise relations derived from user
metadata, tweet texts, and social relations. Moreover, HyperScan
obtains a hybrid user representation based on the cross-attention
mechanism for accurate social bot detection. We have conducted
extensive experiments on real-world datasets to demonstrate the
superiority of our solution over existing methods.

In future work, we intend to explore the evolution of social
bots and humans by building an information propagation graph
and considering effective modeling of their online diffusion pat-
terns [5, 49, 62]. Moreover, we plan to extend our method using
federated learning [64] across several social platforms to enhance
its generalization capabilities by integrating the cross-platform
knowledge. Additionally, large language models (LLMs) will be
employed to generate semantic knowledge related to higher-order
relations to improve the quality of initial node features [34, 35].

Acknowledgments
This work is sponsored by National Natural Science Foundation of
China (No. 62072115, No. 62472101), Shanghai Science and Tech-
nology Innovation Action Plan Project (No. 22510713600).



CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Min Gao et al.

GenAI Usage Disclosure
We use generative AI tools to assist with language editing. All AI-
generated content has been reviewed and edited by the authors to
ensure accuracy and improve clarity.

References
[1] Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda, Yamir

Moreno, Matjaž Perc, and Vito Latora. 2021. Evolutionary dynamics of higher-
order interactions in social networks. Nature Human Behaviour 5, 5 (2021),
586–595.

[2] Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme
Ferraz de Arruda, Benedetta Franceschiello, Iacopo Iacopini, Sonia Kéfi, Vito
Latora, Yamir Moreno, Micah M Murray, Tiago P Peixoto, Francesco Vaccarino,
and Giovanni Petri. 2021. The physics of higher-order interactions in complex
systems. Nature Physics 17, 10 (2021), 1093–1098.

[3] Austin R Benson, David F Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163–166.

[4] David M Beskow and Kathleen M Carley. 2020. You are known by your friends:
Leveraging network metrics for bot detection in Twitter. Open Source Intelligence
and Cyber Crime: Social Media Analytics (2020), 53–88.

[5] Meng Cai, Han Luo, Xiao Meng, Ying Cui, andWei Wang. 2023. Network distribu-
tion and sentiment interaction: Information diffusion mechanisms between social
bots and human users on social media. Information Processing & Management 60,
2 (2023), 103197.

[6] Zijian Cai, Zhaoxuan Tan, Zhenyu Lei, Zifeng Zhu, Hongrui Wang, Qinghua
Zheng, andMinnan Luo. 2024. LMBot: Distilling Graph Knowledge into Language
Model for Graph-less Deployment in Twitter Bot Detection. In Proceedings of
WSDM. 57–66.

[7] Guido Caldarelli, Rocco De Nicola, Fabio Del Vigna, Marinella Petrocchi, and
Fabio Saracco. 2020. The role of bot squads in the political propaganda on Twitter.
Communications Physics 3, 1 (2020), 81.

[8] Jie Chen, Zilong Li, Yin Zhu, Junping Zhang, and Jian Pu. 2023. From node inter-
action to hop interaction: New effective and scalable graph learning paradigm.
In Proceedings of IEEE/CVF CVPR. 7876–7885.

[9] Wen Chen, Diogo Pacheco, Kai-Cheng Yang, and Filippo Menczer. 2021. Neutral
bots probe political bias on social media. Nature Communications 12, 1 (2021),
5580.

[10] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. 2022. You are AllSet:
A Multiset Function Framework for Hypergraph Neural Networks. In Proceedings
of ICLR.

[11] Zi Chu, Steven Gianvecchio, Haining Wang, and Sushil Jajodia. 2012. Detecting
Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg? IEEE
Transactions on Dependable and Secure Computing 9, 6 (2012), 811–824.

[12] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and
Maurizio Tesconi. 2020. Emergent properties, models, and laws of behavioral
similarities within groups of Twitter users. Computer Communications 150 (2020),
47–61.

[13] Alexandre Duval and Fragkiskos Malliaros. 2022. Higher-order clustering and
pooling for graph neural networks. In Proceedings of ACM CIKM. 426–435.

[14] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy
Wolf, Anh Tuan Luu, and Dominique Beaini. 2022. Long range graph benchmark.
Advances in Neural Information Processing Systems 35 (2022), 22326–22340.

[15] Juan Echeverria and Shi Zhou. 2017. Discovery, Retrieval, and Analysis of the
‘Star Wars’ Botnet in Twitter. In Proceedings of ASONAM. 1–8.

[16] Mohd Fazil, Amit Kumar Sah, and Muhammad Abulaish. 2021. DeepSBD: A Deep
Neural Network Model with Attention Mechanism for Social Bot Detection. IEEE
Transactions on Information Forensics and Security 16 (2021), 4211–4223.

[17] Shangbin Feng, Zhaoxuan Tan, Rui Li, and Minnan Luo. 2022. Heterogeneity-
aware Twitter Bot Detection with Relational Graph Transformers. In Proceedings
of AAAI, Vol. 36. 3977–3985.

[18] Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan Wang, Zilong Chen, Binchi
Zhang, Qinghua Zheng, Wenqian Zhang, Zhenyu Lei, Shujie Yang, Xinshun Feng,
Qingyue Zhang, Hongrui Wang, Yuhan Liu, Yuyang Bai, Heng Wang, Zijian
Cai, Yanbo Wang, Lijing Zheng, Zihan Ma, Jundong Li, and Minnan Luo. 2022.
Twibot-22: Towards Graph-based Twitter Bot Detection. Advances in Neural
Information Processing Systems 35 (2022), 35254–35269.

[19] Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, and Minnan Luo. 2021.
SATAR: A self-supervised approach to Twitter account representation learning
and its application in bot detection. In Proceedings of ACM CIKM. 3808–3817.

[20] Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, and Minnan Luo. 2021.
Twibot-20: A comprehensive Twitter bot detection benchmark. In Proceedings of
ACM CIKM. 4485–4494.

[21] Shangbin Feng, Herun Wan, Ningnan Wang, and Minnan Luo. 2021. BotRGCN:
Twitter bot detectionwith relational graph convolutional networks. In Proceedings
of ASONAM. 236–239.

[22] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph Neural Networks. In Proceedings of AAAI, Vol. 33. 3558–3565.

[23] Emilio Ferrara. 2023. Social bot detection in the age of ChatGPT: Challenges and
opportunities. First Monday 28, 6 (2023).

[24] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and Alessandro
Flammini. 2016. The rise of social bots. Commun. ACM 59, 7 (2016), 96–104.

[25] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In Proceedings of ICLR Workshop on Representation Learning
on Graphs and Manifolds.

[26] Min Gao, Zheng Li, Ruichen Li, Chenhao Cui, Xinyuan Chen, Bodian Ye, Yupeng
Li, Weiwei Gu, Qingyuan Gong, Xin Wang, and Yang Chen. 2023. EasyGraph:
A Multifunctional, Cross-Platform, and Effective Library for Interdisciplinary
Network Analysis. Patterns 4, 10 (2023), 100839.

[27] Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. 2022. HGNN+: General Hy-
pergraph Neural Networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45, 3 (2022), 3181–3199.

[28] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of NIPS. 1025–1035.

[29] Chris Hays, Zachary Schutzman, Manish Raghavan, Erin Walk, and Philipp
Zimmer. 2023. Simplistic Collection and Labeling Practices Limit the Utility of
Benchmark Datasets for Twitter Bot Detection. In Proceedings of the ACM Web
Conference 2023. 3660–3669.

[30] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In Proceedings of the Web Conference 2020. 2704–2710.

[31] Di Huang, Jinbao Song, and Xingyu Zhang. 2025. Semi-Supervised Social Bot
Detection with Relational Graph Attention Transformers and Characteristics of
the Social Environment. Information Fusion (2025), 102956.

[32] Haitao Huang, Hu Tian, Xiaolong Zheng, Xingwei Zhang, Daniel Dajun Zeng,
and Fei-Yue Wang. 2024. CGNN: A Compatibility-Aware Graph Neural Network
for Social Media Bot Detection. IEEE Transactions on Computational Social Systems
11, 5 (2024), 6528–6543.

[33] Jing Huang and Jie Yang. 2021. UniGNN: a Unified Framework for Graph and
Hypergraph Neural Networks. In Proceedings of IJCAI. 2563–2569.

[34] Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng Bao, Quanjin Tao, Ziwei
Chai, and Qi Zhu. 2024. Can GNN be Good Adapter for LLMs?. In Proceedings of
the ACM Web Conference 2024. 893–904.

[35] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. 2024. Large
Language Models on Graphs: A Comprehensive Survey. IEEE Transactions on
Knowledge and Data Engineering 36, 12 (2024), 8622–8642.

[36] Long Jin, Yang Chen, Tianyi Wang, Pan Hui, and Athanasios V. Vasilakos. 2013.
Understanding user behavior in online social networks: a survey. IEEE Commu-
nications Magazine 51, 9 (2013), 144–150.

[37] Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, and Kijung
Shin. 2024. A survey on hypergraph neural networks: an in-depth and step-by-
step guide. In Proceedings of ACM SIGKDD. 6534–6544.

[38] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of ICLR.

[39] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of ICLR.

[40] Geon Lee, Jaemin Yoo, and Kijung Shin. 2023. Mining of Real-world Hypergraphs:
Patterns, Tools, and Generators. In Proceedings of ACM SIGKDD. 5811–5812.

[41] Feng Liu, Chunfang Yang, Zhenyu Li, Daofu Gong, Rui Ma, and Fenlin Liu. 2023.
Accou2vec: A Social Bot Detection Model Based on Community Walk. IEEE
Transactions on Dependable and Secure Computing (2023), 1–17.

[42] Luotao Liu, FengHuang, Xuan Liu, ZhankunXiong,Menglu Li, Congzhi Song, and
Wen Zhang. 2023. Multi-view contrastive learning hypergraph neural network for
drug-microbe-disease association prediction. In Proceedings of IJCAI. 4829–4837.

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692
(2019).

[44] Yuhan Liu, Zhaoxuan Tan, HengWang, Shangbin Feng, Qinghua Zheng, and Min-
nan Luo. 2023. BotMoE: Twitter bot detection with community-aware mixtures
of modal-specific experts. In Proceedings of ACM SIGIR. 485–495.

[45] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and refining heterogeneous
graph neural networks. In Proceedings of ACM SIGKDD. 1150–1160.

[46] Nuoyan Lyu, Bingbing Xu, Fangda Guo, and Huawei Shen. 2023. DCGNN: Dual-
Channel Graph Neural Network for Social Bot Detection. In Proceedings of ACM
CIKM. 4155–4159.

[47] Diogo Pacheco. 2024. Bots, Elections, and Controversies: Twitter Insights from
Brazil’s Polarised Elections. In Proceedings of the ACM Web Conference. 2651–
2659.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: an imperative style, high-performance deep learning



Higher-Order Information Matters: A Representation Learning Approach for Social Bot Detection CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

library. In Proceedings of NIPS. 8026–8037.
[49] Jinghua Piao, Jiazhen Liu, Fang Zhang, Jun Su, and Yong Li. 2023. Human–AI

adaptive dynamics drives the emergence of information cocoons. Nature Machine
Intelligence 5, 11 (2023), 1214–1224.

[50] Boyu Qiao, Wei Zhou, Kun Li, Shilong Li, and Songlin Hu. 2024. Dispelling
the Fake: Social Bot Detection Based on Edge Confidence Evaluation. IEEE
Transactions on Neural Networks and Learning Systems (2024), 1–14.

[51] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text Transformer. Journal of
Machine Learning Research 21, 1 (2020), 5485–5551.

[52] Hanan Samet. 2007. K-nearest Neighbor Finding Using MaxNearestDist. IEEE
Transactions on Pattern Analysis and Machine Intelligence 30, 2 (2007), 243–252.

[53] Mohsen Sayyadiharikandeh, Onur Varol, Kai-Cheng Yang, Alessandro Flammini,
and Filippo Menczer. 2020. Detection of novel social bots by ensembles of
specialized classifiers. In Proceedings of ACM CIKM. 2725–2732.

[54] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In Proceedings of ESWC. Springer, 593–607.

[55] Chengcheng Shao, Giovanni Luca Ciampaglia, Onur Varol, Kai-Cheng Yang,
Alessandro Flammini, and Filippo Menczer. 2018. The spread of low-credibility
content by social bots. Nature Communications 9, 4787 (2018).

[56] Wei Shen, Mang Ye, andWenke Huang. 2024. Resisting Over-Smoothing in Graph
Neural Networks via Dual-Dimensional Decoupling. In Proceedings of ACM MM.
5800–5809.

[57] Shuhao Shi, Yan Li, Zihao Liu, Chen Chen, Jian Chen, and Bin Yan. 2024. Neigh-
borhood Difference-Enhanced Graph Neural Network Based on Hypergraph
for Social Bot Detection. In Proceedings of the Chinese Conference on Pattern
Recognition and Computer Vision (PRCV). Springer, 76–90.

[58] Shuhao Shi, Kai Qiao, Zihao Liu, Jie Yang, Chen Chen, Jian Chen, and Bin Yan.
2025. MGTAB: A Multi-Relational Graph-Based Twitter Account Detection
Benchmark. Neurocomputing 647 (2025), 130490.

[59] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, 11 (2008), 2759–2605.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. Advances in Neural Information Processing Systems 30 (2017), 5998–6008.
[61] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of ICLR.
[62] Shaomei Wu, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. 2011.

Who says what to whom on Twitter. In Proceedings of WWW. 705–714.
[63] ZhanghaoWu, Paras Jain, MatthewWright, Azalia Mirhoseini, Joseph E Gonzalez,

and Ion Stoica. 2021. Representing long-range context for graph neural networks
with global attention. Advances in Neural Information Processing Systems 34
(2021), 13266–13279.

[64] Han Xie, Li Xiong, and Carl Yang. 2024. Federated Node Classification over
Distributed Ego-Networks with Secure Contrastive Embedding Sharing. In Pro-
ceedings of ACM CIKM. 2607–2617.

[65] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand
Louis, and Partha Talukdar. 2019. HyperGCN: A new method for training graph
convolutional networks on hypergraphs. In Proceedings of NIPS. 1511–1522.

[66] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan,
and Jianfeng Gao. 2021. Focal attention for long-range interactions in vision
Transformers. Advances in Neural Information Processing Systems 34 (2021),
30008–30022.

[67] Kai-Cheng Yang, Onur Varol, Pik-Mai Hui, and Filippo Menczer. 2020. Scalable
and generalizable social bot detection through data selection. In Proceedings of
AAAI, Vol. 34. 1096–1103.

[68] Yingguang Yang, Qi Wu, Buyun He, Hao Peng, Renyu Yang, Zhifeng Hao, and
Yong Liao. 2024. SEBot: Structural Entropy Guided Multi-View Contrastive
Learning for Social Bot Detection. In Proceedings of ACM SIGKDD. 3841–3852.

[69] Bodian Ye, Min Gao, Xiu-Xiu Zhan, Xinlei He, Zi-Ke Zhang, Qingyuan Gong, Xin
Wang, and Yang Chen. 2025. EasyHypergraph: an open-source software for fast
and memory-saving analysis and learning of higher-order networks. Humanities
and Social Sciences Communications 12, 1291 (2025).

[70] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, AndreyMalevich,
Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decoupling
the depth and scope of graph neural networks. Advances in Neural Information
Processing Systems 34 (2021), 19665–19679.

[71] Jinxue Zhang, Rui Zhang, Yanchao Zhang, and Guanhua Yan. 2016. The rise of
social botnets: Attacks and countermeasures. IEEE Transactions on Dependable
and Secure Computing 15, 6 (2016), 1068–1082.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Social Bot Detection
	2.2 Long-Range Dependency in Graph Learning
	2.3 Higher-Order Information Modeling and Learning

	3 Our Approach: HyperScan
	3.1 Preliminaries
	3.2 Feature Encoder
	3.3 Hybrid-Order Relation Learner
	3.4 Bot Detector

	4 Experiments and Analysis
	4.1 Experiment Setup
	4.2 Detection Performance (RQ1)
	4.3 Ablation Studies (RQ2)
	4.4 Sensitivity Analysis (RQ3)
	4.5 Visualization & Generalization (RQ4)

	5 Conclusion and Future Work
	Acknowledgments
	References

