FediScan: Collaborative Social Bot Detection in the Fediverse

Min Gao
College of Computer Science and
Artificial Intelligence, Fudan
University
Shanghai, China
State Key Laboratory of Internet
Architecture, Tsinghua University
Beijing, China
mgao21@m.fudan.edu.cn

Qiang Duan
Department of Information Sciences
and Technology, The Pennsylvania
State University
Abington, PA, United States
qduan@psu.edu

Xin Wang
Shanghai Key Lab of Intelligent
Information Processing, College of
Computer Science and Artificial
Intelligence, Fudan University
Shanghai, China
xinw@fudan.edu.cn

Wen Wen
Shanghai Key Lab of Intelligent
Information Processing, College of
Computer Science and Artificial
Intelligence, Fudan University
Shanghai, China
wwen24@m.fudan.edu.cn

Yu Xiao
Department of Information and
Communications Engineering, Aalto
University
Espoo, Finland
yu.xiao@aalto.fi

Pan Hui
Hong Kong University of Science and
Technology (Guangzhou)
Guangzhou, China
Hong Kong University of Science and
Technology
Hong Kong, China
panhui@ust.hk

Haoran Du
Shanghai Key Lab of Intelligent
Information Processing, College of
Computer Science and Artificial
Intelligence, Fudan University
Shanghai, China
hrdu24@m.fudan.edu.cn

Yupeng Li
Department of Interactive Media,
Hong Kong Baptist University
Hong Kong, China
ypengl@hkbu.edu.hk

Yang Chen”

Shanghai Key Lab of Intelligent
Information Processing, College of
Computer Science and Artificial
Intelligence, Fudan University
Shanghai, China
chenyang@fudan.edu.cn

Abstract

The growing concern for data privacy and user autonomy has led to
the rise of decentralized online social networks, such as Mastodon.
Unlike centralized platforms, Mastodon’s federated architecture
comprises a number of independent instances. Social bots, which
are automated accounts that might spread misinformation and
manipulate discourse, pose significant threats to platform mod-
eration and security. Detecting these social bots in decentralized
online social networks such as Mastodon is challenging due to the
fragmented governance, non-IID data distributions, and diverse
modalities across their different instances. Current social bot de-
tection methods, designed for centralized systems, fail to address
these challenges while preserving user privacy. To fill this gap, we
propose FediScan, a decentralized federated learning framework for
social bot detection in the Fediverse. FediScan introduces three key
innovations: (1) a modality-specific data augmentation module inte-
grating a feature augmentation strategy and a multimodal encoder
with a gated attention mechanism to learn informative user rep-
resentations for robust social bot detection; (2) a semantic-aware
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communication protocol incorporating an instance hypergraph
built upon hashtag co-occurrence, enabling knowledge sharing
without exchanging raw data; and (3) an asynchronous aggregation
strategy to accelerate convergence and reduce overhead. Extensive
evaluation on a representative multimodal dataset from Mastodon
demonstrates that FediScan achieves a significant improvement
in F1-score over existing methods. This work introduces a novel
approach for privacy-preserving, collaborative detection of social
bots within decentralized online social networks.
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1 Introduction

Mastodon, as part of the Fediverse [3, 4]', has emerged as a lead-
ing alternative to centralized online social networks like Twitter
(X) and Facebook [27, 67]. Its distributed architecture, where each
instance operates independently with its own moderation policies,
user base, and governance structures [7, 20, 28, 40, 42], empowers
users with control over their data and attracts a growing number of
users seeking a more private and user-centric experience. However,
this decentralization creates a paradox: while it enhances privacy
and autonomy, it also introduces new challenges to governance
mechanisms [50]. A critical challenge in this ecosystem is the pro-
liferation of social bots, automated accounts capable of spreading
misinformation, manipulating political discourse, and degrading
user experience. According to [66], approximately 5% of Mastodon
users are estimated to be social bots, posing a significant threat to
the platform’s integrity. Unlike centralized platforms that employ
dedicated teams for content moderation, Mastodon operates as a
decentralized network consisting of thousands of independently
managed instances. These instances differ in values, cultures, and
governance rules. Most instances are operated by volunteer ad-
ministrators who often lack advanced moderation tools, unified
detection policies, or access to user data from other instances [4].
This fragmented structure makes it difficult to coordinate the de-
tection and management of potential social bots [4]. Consequently,
it is imperative to develop and implement an effective approach
for social bot detection to enhance the governance of the entire
Mastodon platform.

Recent studies [16, 59, 60] have focused on social bot detection
in centralized platforms like Twitter (X) and Weibo. Among them,
graph neural networks (GNNs)-based methods have achieved lead-
ing performance by integrating multimodal data, including user
metadata, textual content, and social graph structures [16, 37, 60].
However, these approaches assume complete access to user fea-
tures and social connections. However, such an assumption does
not hold in decentralized scenarios. In these platforms, user data is
distributed across independently operated instances, each governed
by distinct moderation policies [38, 65]. Even with collected data,
existing models face challenges in generalizing across different in-
stances. This is due to the variation in user behaviors, including
posting preferences and language styles. Therefore, new approaches
are needed to handle the decentralized nature of user data to detect
social bots in decentralized platforms.

To develop an effective social bot detection framework in the
Fediverse, several key challenges need to be solved. (1) Privacy-
preserving and decentralized learning. Since user-generated content
(UGC) is distributed across independently operated instances and
there is no central coordinating server, aggregating all data in a
central server is neither feasible nor privacy-compliant. Conse-
quently, decentralized federated learning (DFL) [24, 53] emerges
as a promising solution. However, applying DFL in this setting
is challenging. Unlike traditional FL scenarios, where heterogene-
ity typically comes from individual users or similar organizations,

IThe Fediverse, short for “federated universe”, is a network of decentralized
online social platforms, where most of them can communicate with each other via
decentralized social networking protocols such as ActivityPub.
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Figure 1: Analysis of data heterogeneity (In subfigures (a)-(c),
we display the distribution across user counts, labels, and images
within UGC data for the top-20 instances from the FediData dataset,
respectively. Subfigure (d) is an overview of decentralized federated
learning.)

the Mastodon instances exhibit a significant variety in user de-
mographics, posting preferences, and moderation policies, leading
to highly non-independent and non-identically distributed (non-
1ID) data [65]. Each instance serves as an independent community
with its own moderation policies and content preferences. This
ever-changing diversity increases distribution variations and poses
significant challenges for model convergence and generalization.
(2) Label imbalance and cross-instance modality heterogeneity. Each
instance holds multimodal data such as text, images, and meta-
data, with distinct distributions in quantity, labeling, and semantic
distribution. To analyze this heterogeneity, we use FediData [17]?,
a publicly available multimodal Mastodon dataset that includes
textual posts, images, user profiles, and social links. This dataset
was collected via Mastodon’s official REST API® between October
25-30, 2024. Based on this dataset, we select the top-20 instances
by user count and analyze the distribution of data heterogeneity
(see Figure 1). This heterogeneity exists not only between instances
but also within individual instances across modalities, making it
critical to design a framework that adapts to these variations. (3)
Peer selection for semantically meaningful knowledge sharing. In DFL
settings, instances can exchange parameters with other instances
(peers?) following a predefined network topology [33, 44, 62]° to
improve generalization and accelerate model convergence. How-
ever, using random or topology-based methods [62] might connect
semantically dissimilar instances, resulting in noisy knowledge
sharing and inefficient model convergence. For instance, an image-
dominated instance collaborating with a text-dominated instance
might introduce noisy updates due to modality mismatch, leading
to suboptimal performance.

Zhttps://zenodo.org/records/15621243

3https://docs.joinmastodon.org/client/intro/

“In this paper, a peer denotes an instance that directly communicates with other
instances to exchange model parameters.

5In DFL, the network topology defines how participants are connected. The
participants involved in the learning process typically collaborate only with their
neighbors.
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To tackle these challenges, we propose FediScan, a decentral-
ized federated learning framework designed for detecting social
bots in decentralized online social networks such as Mastodon.
FediScan features a modality-specific data augmentation technique
and a semantic-aware communication protocol to facilitate effi-
cient peer selection and perform bot detection in a decentralized,
asynchronous manner. To tackle the first challenge, we introduce a
decentralized federated learning (DFL) framework (see Figure 1(d)),
which allows each instance to learn multimodal representations and
identify social bots without exposing raw data. For the second chal-
lenge, we incorporate multiple modalities, such as text, images, and
user metadata. We introduce a feature augmentation strategy and a
gated attention mechanism to address the label imbalance issue and
learn a unified multimodal representation for social bot detection.
For the third challenge, we introduce a semantic-aware communica-
tion protocol that helps each instance select peers with semantically
meaningful knowledge for parameter exchange. Furthermore, we
adopt an asynchronous aggregation strategy to enable peer-to-peer
communication for model updates, enhancing the efficiency of our
model.

In summary, our contributions are threefold:

e To our best knowledge, we are the first to focus on social bot
detection in decentralized online social networks and also the first
to consider the image modality for this task. We have validated
the significance of the image modality, highlighting that this
modality could contain rich semantic knowledge, which was
ignored by previous studies.

e We propose FediScan, a decentralized federated learning frame-
work for social bot detection. We introduce a modality-specific
data augmentation strategy to handle the label imbalance and
multimodal heterogeneity issues. Furthermore, we introduce a
semantic-aware communication protocol with an instance hy-
pergraph based on the co-hashtag information across different
instances. By leveraging these two designs, FediScan supports
informative multimodal representation and efficient peer-to-peer
communication.

e We have conducted extensive experiments on a comprehensive
multimodal dataset from Mastodon. These findings indicate that
FediScan outperforms existing methods by a significant improve-
ment in F1-score for social bot detection, while maintaining an
acceptable communication cost.

2 Related Work

Social bot detection. Existing social bot detection methods mainly
target centralized online social networks, such as Twitter (X) and
Weibo. For each platform, all user data, including user profiles,
social relationships, and UGC data, is centrally stored. Therefore,
early efforts in social bot detection focused mainly on extracting
informative features from user data and utilizing machine learn-
ing techniques to identify bots [9, 18, 23, 29, 30, 35, 52, 57]. These
studies extract statistical and textual features from user profile
information, UGC data, and user behavior using statistical stud-
ies and some approaches based on natural language processing
(NLP) [2, 21]. These extracted features are then fed into classical
machine learning models or simple temporal learning models to
identify social bots. Recent graph neural networks (GNNs)-based
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methods [14, 16, 38, 60] introduce GNNs for effective social bot
detection due to their superiority in modeling network structures.
For example, Feng et al. [16] introduced a relational graph neu-
ral network (R-GCN) to learn user representations. To adaptively
fuse information from neighbors, the self-attention mechanism was
utilized in the study [14]. Subsequent studies [60] considered hier-
archical structural information by introducing contrastive learning
for social bot detection. Ling et al. [34] considered enhancing the ex-
tracted user features and leveraging the edge similarity information
to improve social bot detection. Although the above methods have
achieved success in centralized scenarios, it is difficult for them to
be directly applicable to decentralized online social networks like
Mastodon, where user data is distributed among different instances.
Moreover, previous studies [16, 34, 59] have relied heavily on tex-
tual content, user profile metadata, and social graph structures, and
they have omitted the image modality, which plays a crucial role
in bot behaviors. Bots often exploit coordinated visual deception,
such as using identical profile pictures or memes to amplify their
influence [25, 45]. The lack of image modeling might result in in-
complete representations and hinder detection performance. In this
work, we consider the image modality and decentralized nature of
social bot detection on Mastodon.

Content moderation. Decentralizing the web is an appealing yet
difficult objective. A key difficulty lies in implementing decentral-
ized content moderation that can withstand a range of adversarial
actors. Several efforts have been made to address this issue. Zia et
al. [8] have characterized the spread of toxicity on the platform, con-
firming that the federation process allows toxic content to spread
between instances. They have further explored the challenges of
moderating this process by building per-instance models. They
found that federated toots constitute the most significant chunk of
toxic content in 26/30 of the instances. Moreover, 60% of toxic toots
get more than one reblog, compared with only 16% of non-toxic
toots. This trend indicates that interest and uptake in toxic materi-
als are consistently higher. Hassan et al. [4] observed a diversity
of administrator strategies, with evidence that administrators on
larger instances struggle to find sufficient resources. They then
proposed a tool, WatchGen, to semi-automate the process. Agarwal
et al. [3] noticed that each server only has a partial view of an en-
tire conversation because conversations are often federated across
servers in a non-synchronized fashion. To address this, this work
proposed a decentralized conversation-aware content moderation
approach suitable for the Fediverse. Zhang et al. [64] conducted
semi-structured interviews with 16 Mastodon instance administra-
tors, including those who host instances to support marginalized
and stigmatized communities, to understand their motivations and
lived experiences of running decentralized online social networks.
Zia et al. [65] presented FedMod, which utilized a federated learn-
ing method for collaborative content moderation. Although prior
studies have explored potential solutions for content moderation
on Mastodon, they have not focused on the special users, social
bots. None of their solutions could be directly used to identify social
bots. Unlike existing content moderation studies based on textual
data, this study focuses on the social bot detection task, which is
more challenging due to its multimodal nature.

Decentralized federated learning. Decentralized federated learn-
ing (DFL) [24, 53, 55, 62] is a federated learning paradigm that
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operates without a central server, where nodes directly exchange
model updates via a peer-to-peer communication mechanism. Com-
pared with centralized FL [31], DFL utilizes resources to aggregate
model parameters across all participating nodes. Additionally, DFL
enhances the robustness of the network and mitigates the risk of
a single point of failure. Recent studies primarily focus on asyn-
chronous communication mechanisms [24] and network topology
algorithms [41, 62]. In this work, we have leveraged a decentral-
ized FL framework and defined an instance hypergraph to support
peer selection without employing traditional network topology for
communication.

3 FediScan Framework

In this section, we first formulate the definition of the social bot
detection problem in decentralized online social networks in Sec-
tion 3.1. Then, we introduce the overall framework of our method,
named FediScan, in Section 3.2, followed by a detailed introduc-
tion of a modality-specific data augmentation in Section 3.3 and
a semantic-aware communication protocol in Section 3.4, respec-
tively.

3.1 Preliminaries

In Mastodon, each instance holds a subset of users and their mul-
timodal data. Let K denote the total number of instances, and let
Dy = {X™, X]:, X?}, where X", Xli, and X} are the metadata, textual
content, and images, respectively. The Y; represents the local user
labels at instance k, where 0 stands for human and 1 stands for bot.
Our goal is to train a decentralized social bot detection model 6 via
decentralized FL learning, where each instance collaborates with
selected peers to optimize a multimodal encoder and a classifier.

The learning objective is

K K

min > Li(0) = >3 Bo v~y [L (Fie (E(G), 0), i)l
k=1 k=1

where E (X} ) is the multimodal encoder, F(-) is the classifier for

instance k, and L (6) is the loss function of the instance k.

3.2 Overview of FediScan

As illustrated in Figure 2, FediScan is designed to address the chal-
lenges of modality heterogeneity and privacy preservation in de-
centralized social bot detection. It consists of two core compo-
nents, a modality-specific data augmentation (see Section 3.3) and a
hypergraph-based communication protocol (see Section 3.4), which
work synergistically to enable efficient and privacy-preserving col-
laborative learning. The former aligns heterogeneous multimodal
features (text, metadata, and images) into a unified latent space, al-
lowing the model to learn discriminative patterns between humans
and bots. The latter introduces a semantic-aware communication
protocol to enhance collaboration efficiency, where instances com-
municate only with semantically aligned peers via an asynchronous
protocol based on a hypergraph structure determined by co-hashtag
relationships.

3.3 Modality-Specific Data Augmentation

To effectively tackle the challenges posed by modality heterogeneity
across different instances, we introduce a modality-specific data
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augmentation module. Specifically, for each instance, this module
aims to enhance and integrate local multimodal data (user metadata,
textual data, and images) into a unified latent space for robust
social bot detection. We will present several key designs of this
component.

3.3.1 Multimodal Encoder. The multimodal encoder serves as a
cross-modal feature extractor, and it maps raw multimodal data into
a unified latent space. A gated attention mechanism is utilized to
dynamically adjust weights across modalities to ensure robust fea-
ture alignment. We will introduce how we encode raw multimodal
data.

Metadata encoder. Based on user metadata, we consider six numer-
ical (including “follower_count”, “following_count”, “statuses_count”,
“account_name_length”, “notes_length”, and “activate_days”) and
four categorical metadata features (“locked”, “discoverable”, “islo-
cal”, “ismastodon”) based on user profile information. After perform-
ing z-score normalization [16], we apply a two-layer Multi-Layer
Perceptron (MLP) to learn representations for user metadata x™.
Textual encoder. To make good use of textual content, we con-
sider the original text data from user posts as textual information.
We used the DistilBERT model [51]° to learn the textual features
of the users. DistilBERT is a transformer-based model and faster
than BERT for inference or downstream tasks. The process can be
described as

T® = Concat(T,), x. = DistilBERT(T?), (1)

where T is the combined textual data of user u with original texts
T,, and x/, is the learned textual representations of user u. We denote
the textual representations of all users as x*. Concat(-) refers to the
concatenation operation, and DistilBERT(-) denotes the use of the
DistilBERT model to learn textual embeddings.

Visual encoder. We consider both user avatars and images con-
tained in UGC data. For these visual contents, we encode them with
the DeiT-III model [56]7 individually, which can be defined as

u

1
X2 = EDeiT-HI (Stack(v, 0%, ..., 01M), )

where v refers to the k-th image of the user u, Stack(-) is the
stacking operation, and m is the length of the input image sequences.
We then concatenate the image features obtained from the user
avatars and the user UGC data and feed them into a two-layer MLP
to obtain visual representations of the users x°.

3.3.2  Feature Augmentation. To alleviate the label imbalance issue
in our task, we introduce a feature augmentation strategy that
dynamically enriches minority class users in each modality.

Taking the user textual embedding x’ as an example, the augmen-
tation process is formalized as follows. The first step is minority
class identification. Given the user labels Y, for each class ¢ € C,
we first compute its frequency n. = Xjep1,..n) 1{y; = c}, where
1{-} is the indicator function. The minority user class cpi, is de-
termined by cpmin = argmingccn.. Then, we employ a Gaussian
noise augmentation. For the textual embedding x} € X, of user
i, we generate synthetic samples by perturbing the original fea-
tures with Gaussian noise, denoted as eit ~ Nt (O, O'ZId), where N*

Shttps://huggingface.co/distilbert/distilbert-base-multilingual-cased
7https:/ /huggingface.co/timm/deit3_small_patch16_224.fb_in22k_ft_in1k
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Figure 2: FediScan framework for decentralized social bot detection. It has two modules: (a) modality-specific data augmen-
tation via feature augmentation and gated attention mechanism, and (b) semantic-aware communication protocol enabling
asynchronous, semantically aligned parameter exchange to overcome modality-heterogeneity challenges.

represents the distribution with ¢ to control the noise scale to main-
tain feature consistency, and I; denotes the identity matrix whose
size matches the feature dimension. The augmented feature x!’ is
computed as x!" = x! + €!, where x!" and x! are the augmented
features and original features, respectively. Similarly, we obtain the
corresponding labels y!” = y?, where y! is the original user label.
Finally, we concatenate the augmented textual features and labels
with the original data to enhance the user data via X} = [xf ;xf '],
and Y/ = [y!;y!"]. We denote the augmented textual features of
all users as X’. Similarly, we can obtain the augmented metadata
features X" and augmented image features X°.

3.3.3 Gated Attention. To effectively fuse multimodal features, we
introduce a gated attention mechanism. By leveraging a learnable
gating attention mechanism, the multimodal encoder could dy-
namically assign weights to different modalities for adapting to
variations in data distribution across instances. Specifically, we
compute modality attention weights via

[W™|W![[W?] = o(MLP ([X™]IX"[1X°])). 3)

where W™, W, and W? are learnable modality weights of meta-
data, textual, and visual data, respectively. X™, X!, and X° are
augmented metadata representation, textual representation, and
visual representation, respectively. || denotes the concatenation
function. The unified user representation can be obtained by X =
wm . X™ + W X" + WY - X°. This design not only maintains
the complementary nature of multimodal data but also improves
our model’s ability to handle modality heterogeneity by learning
adaptive weights. The unified user representation X enhances col-
laboration across different instances and enables robust social bot
detection.

3.3.4 Classifier. Based on the unified latent user representation, we
implement the final classification layer using a multi-layer percep-
tron with two fully connected layers, with the first layer followed
by a ReLU activation function and a dropout layer to distinguish

social bots from humans. This process can be represented as
hy = ReLU(W,X + by),h, = Dropout(h;), Y = Wyh, + by, (4)

where W, Wy, by, and b;, are learnable parameters, ReLU and Dropout
are the activation function and the dropout layer. Y is the final pre-
dicted user labels. Here, the dropout layer is equipped with a rate
of 0.2 to mitigate overfitting. Considering the label imbalance issue,
we utilize the weighted cross-entropy loss to optimize the model,
denoted as Lwcg = —% Zf\il ch:1 we - I{y; = ¢} - log p; ., where
N and C are the number of users and classes, respectively. The w,
represents the weight assigned to user class c, and p; . refers to the
predicted probability of sample i belonging to class ¢, and 1{y; = c}
is the indicator function, where it equals 1 if y; = ¢, otherwise 0.

3.4 Semantic-Aware Communication Protocol

In this section, we introduce a semantic-aware communication
protocol, which is designed to facilitate semantic alignment and
efficient collaboration across decentralized instances. This protocol
allows each instance to exchange parameters with semantically
similar peers during training. Inspired by [65], we first extract
hashtag information from each instance and then construct an
instance-hashtag bipartite graph based on the co-occurrence of
hashtags among instances. This bipartite graph is then transformed
into a hypergraph, where each hyperedge connects instances that
share the same hashtags. This design avoids noisy updates from
mismatched modality distributions and adapts to evolving data
patterns. In the following, we elaborate on the key designs of this
component, including the construction of the instance-hashtag
bipartite graph and instance hypergraph, and the asynchronous
aggregation strategy.

3.4.1 Instance-Hashtag Bipartite Graph Construction. In Mastodon,
hashtags are words preceded by the “#” symbol used to categorize
posts by topic. Therefore, hashtags serve as a critical source of
semantic information, motivating us to leverage this knowledge in
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our semantic-aware communication protocol. Firstly, we collect the
hashtags for each instance by aggregating them from tweets. Then,
we construct a co-hashtag matrix H across all instances, where
H;j = 1if hashtag j appears in instance i, and H;; = 0 otherwise.
Based on this matrix, we construct an instance-hashtag bipartite
graph, where nodes are instances and hashtags, and edges exist
between instances and hashtags.

3.4.2 Instance Hypergraph Construction. Based on the instance-
hashtag bipartite graph, we construct an instance hypergraph to
capture semantic relationships across different instances. In this
hypergraph, hyperedges are formed by grouping instances that
share semantically coherent hashtag patterns, derived from the
instance-hashtag bipartite graph. This structure enables each in-
stance to communicate and collaborate with peers exhibiting similar
interests, enhancing the robustness of social bot detection while
preserving privacy and reducing noisy interactions.

3.4.3 Asynchronous Aggregation. Considering the dynamic data
distribution across different instances, FediScan employs an asyn-
chronous aggregation strategy to optimize collaborative social bot
detection.

Firstly, at the beginning of each round, each instance trains its
personalized local model using a weighted cross-entropy loss to
address class imbalance. The training order is randomized to en-
sure no global synchronization is required. After local training,
each client aggregates shared parameters (the encoder and classi-
fier) from its neighbors in the instance hypergraph. By avoiding
sharing all parameters, FediScan reduces communication costs. We
adopt an asynchronous Gossip protocol [10, 49], where instances
exchange model updates independently and without waiting for
global synchronization. This design aligns with the decentralized
environment of Mastodon, where instances may join or leave un-
predictably. The aggregation process is guided by modality-aware
similarity weights derived from the instance hypergraph. Specifi-
cally, each instance i updates its shared parameters by considering
both its own representations and those of its top-k neighbors using

. 1

©i 2jen; Wij + Wy (,—gv,- Wi -0+ Wi 91), ®
where r denotes the current round, and N; is the set of top-k neigh-
bors for instance i. Wj; represents the Jaccard similarity between
instance i and instance j. W;; = 1 is the self-weight to preserve local
updates. The personalized local model ®] remains trained indepen-
dently and is only used during the detection phase. This strategy
reduces the communication overhead through lightweight param-
eter exchange and asynchronous updates, while similarity-based
neighbor selection ensures high-quality aggregation.

4 Experiments

In this section, we comprehensively evaluate FediScan by answering
the following research questions (RQs):

e RO1. How does FediScan perform in social bot detection in
decentralized scenarios?

e RQ2. How does each component contribute to the performance
of FediScan?

e RQ3. What about FediScan’s learning efficiency?
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e RQ4. What are the effects of hyperparameter values on the de-
tection performance?

4.1 Experimental Setup

Dataset Information. In this study, we use one representative
multimodal dataset named FediData [17], which was collected from
Mastodon, to evaluate the effectiveness of our method. This dataset
comprises 64,345 unique users from 493 instances with 725,282
posts and 765,019 images. It also provides a sampled dataset, which
contains manually annotated user labels (whether each user is a
human or a bot)®. We adopted the sampled subgraph comprising
12,548 users, with a total of 208,395 posts and 222,850 images. The
sampled dataset consists of 10,613 humans, 1,109 social bots, and
826 background users’.

Baselines and Evaluation Metrics. We compare FediScan with
several representative baselines. To our best knowledge, there is
no existing solution that can directly detect social bots in decen-
tralized platforms. Therefore, we consider the following methods
for comparison.

e Bot detection methods. We consider representative social bot
detection methods, including SGBot [59], BotRGCN [16], and
BotBR [34]. Since they are originally designed for centralized
settings, we have modified each of them to fit within a federated
learning framework. In this setup, various clients (instances)
collaboratively train the model without sharing raw data. We
evaluate each method individually within its instance and then
aggregate the results across these instances for comparison.

o Federated learning strategies. We consider representative
FL strategies such as FedAvg [39], FedProx [31], FedPer [5],
FedBN [47], and FedSea [54]. Among them, FedAvg [39] is a
fundamental federated learning algorithm in which the server av-
erages the updates of local models on client devices. FedProx [31]
improves the local model training and update under heterogene-
ity by adding an optimization item. FedPer and FedBN are de-
signed for personalized FL. FedSea [54] is a representative feder-
ated multimodal learning method.

e Decentralized FL methods. We choose two representative de-
centralized FL strategies, D-PSGD [32] and SGP [6] for com-
parison. Additionally, we consider FedMod [63] for comparison,
which is the state-of-the-art decentralized content moderation
method.

Because our task involves binary classification with an imbalanced
label distribution, we adopt a comprehensive set of evaluation met-
rics, including precision, recall, and F1-score. We utilize the macro
F1-score as our main evaluation metric to fairly assess the model’s
effectiveness in both bot and human classes. These metrics align
with prior studies on social bot detection [16, 34, 37]. In addition
to detection performance, computational efficiency is essential for
decentralized online social networks. Therefore, we further assess
training time, communication cost, and memory cost to evaluate
each method’s efficiency. These metrics allow us to analyze the
trade-off between detection performance and system efficiency.

8 According to [17], the labels were independently annotated by three researchers
based on key criteria (e.g., automated posting, duplicate content) from [15]. The
annotation quality is high, with a Cohen’s kappa [11] value of 0.876.

%In this work, the background users refer to the unlabeled nodes that are linked to
labeled users. These nodes are involved in training but are excluded from evaluation.
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Implementation Details. In this study, we implemented a DFL
framework for social bot detection. Following [17], we first selected
instances with more than 10 accounts (including humans and bots)
to ensure that each instance participating in decentralized FL has
a sufficient user base. Subsequently, we adopted a stratified sam-
pling strategy to divide users in each instance into training (50%),
validation (20%), and test (30%) sets, which ensures consistency of
the distribution of the users of each class across different instances.
To support user alignment in our experiment, we design a global
node index mapping so that nodes between different instances can
be identified correctly in the federation aggregation process. We
select the longest tweets for each user and consider 50 hashtags
to construct the instance-hashtag bipartite graph. All features are
normalized. The dimension of the user representation is 128. We use
EasyGraph [19, 61] to build a hypergraph and adopt PyTorch [46]
and FedML [22] to implement all models and optimize them with
the AdamW optimizer [26]. We set the number of local epochs and
the number of communication rounds as 5 and 10, respectively.
The learning rate is set as 0.001. We report the mean test perfor-
mance over 3 trials. We conducted all experiments on a Linux server
equipped with the Intel Xeon CPU E5-2683 v3 @ 2.00GHz with
256GB of memory and 56 CPU cores.

4.2 Detection Performance

We compare FediScan with the baseline models in terms of precision,
recall, and F1-score. The performance of different methods on the
dataset is presented in Table 1. Some key findings are below:

o The compared centralized social bot detection methods lever-
age both multimodal user features and the social relationship
information. Among these baselines, SGBot shows a relatively
poor performance in centralized settings, while BotBR achieves
a higher F1-score value than other methods. This could be attrib-
uted to the fact that it leverages the edge confidence information
between two users. Compared with these methods, our approach
achieves better performance by leveraging the feature augmenta-
tion strategy to enhance the multimodal representations without
requiring complete graph structures.

e Among these representative FL strategies, we found that none
of these methods achieves the best performance across all three
metrics. For example, FedAvg obtains higher precision and F1-
score values, while FedSea obtains higher recall values. This
highlights that considering personalized FL is significant for our
task, as the high heterogeneity of user data presents challenges
for the model to learn global knowledge.

o Among decentralized FL methods, we observed that the FedMod
method achieves higher performance in terms of precision, recall,
and F1-score. These findings suggest that the text itself carries
useful information, and that the decentralized FL framework
helps distinguish content produced by bots.

e FediScan leverages a modality-specific data augmentation strat-
egy to learn unified user representations and enables each in-
stance to select semantically similar peers guided by a semantic-
aware communication protocol, consistently outperforming all
baselines regarding all three evaluation metrics. This indicates
that augmenting multimodal representations and selecting se-
mantically similar peers are significant for collaborative social
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bot detection by tackling the label imbalance and modality het-
erogeneity issue.

Table 1: Detection performance of all methods (Mean + stan-
dard deviation. The best results are in bold.)

Category H Model ‘ Precision ‘ Recall ‘ F1-score

SGBot 0.1040+0.0232
Centralized || BotRGCN | 0.4863+0.0572
BotBR 0.507240.0788
FedAvg 0.4965+0.0004

0.0634+0.0317
0.5134+0.0610
0.55100.0880
0.56670.0005

0.0630+0.0232
0.507140.0256
0.5129+0.0013
0.52410.0005

FedProx 0.3638+0.0452 0.5003+0.0211 0.2820+0.0271

FL FedPer 0.105740.0103 | 0.4287+0.0088 | 0.1372+0.0113
FedBN 0.4267+0.0623 0.525640.0356 0.402340.0596

FedSea 0.167240.0620 | 0.5914+0.0154 | 0.1947+0.0216

D-PSGD 0.399740.0509 | 0.51130.0348 0.4057+0.0583

DFL SGP 0.3094+0.0281 0.5083+0.0162 0.3394+0.0275
FedMod 0.5026+0.0319 | 0.5704+0.0252 | 0.5285+0.0297

Ours FediScan | 0.5818+0.0171 | 0.6076+0.0221 | 0.5848+0.0193

4.3 Ablation Study

We perform an ablation study to assess the impact of various com-
ponents by designing several variants. The corresponding results
are reported in Figure 3.
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Figure 3: Ablation study

o To study the impact of the feature augmentation technique, we
remove this module and utilize the original multimodal repre-
sentations in FediScan. We denote this variant as M1. Removing
feature augmentation leads to a sharp decrease in performance,
indicating the importance of feature augmentation for social bot
detection.

o To evaluate the effect of the multimodal encoder for both tex-
tual and visual data, we replace the original textual encoder
DistilBERT and visual encoder DeiT-III with RoBERTa [36] and
CLIP [48] models for comparison. We denote this variant as M2.
One could observe that replacing these two encoders with two
other encoders leads to a similar performance in F1-score, sug-
gesting that our approach is compatible with different classic
textual encoders and visual encoders.

o To investigate the importance of the gate attention mechanism,
we design a variant M3 by replacing the gated attention mecha-
nism with a simple concatenation operation followed by a single
linear layer. Removing the gated attention mechanism shows
a decrease in performance, highlighting the importance of this
component.
To test the influence of the semantic-aware communication pro-
tocol, we design a variant M4 by replacing the peer selection
guided by the instance hypergraph with random peer selection
for each instance. Variant M4 shows a decrease in F1-score, indi-
cating the importance of selecting semantically similar peers for
communication.
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e To evaluate the effect of different types of modality data, we
remove each modality data, including metadata, textual content,
and visual content, leading to variants M5, M6, and M7, respec-
tively. Compared with the complete model, it is obvious that
excluding any single data modality could lead to reduced perfor-
mance, highlighting the importance of each type of information
for social bot detection.

4.4 Learning Efficiency Analysis

As shown in Table 2, we compare the learning efficiency of different
methods in social bot detection. FediScan takes 1.59 seconds per
round for training, which is acceptable for our task. Regarding the
memory cost, our method requires 399.99 MB of memory, which
could be due to the fact that FediScan introduces a relatively light-
weight multimodal encoder. In terms of the communication cost,
our method demonstrates an acceptable efficiency performance.
Specifically, it exchanges an average of 115.59 MB per round, which
is substantially lower than several other approaches, like FedAvg.

Table 2: Communication efficiency of all methods (Mean =+
standard deviation. The notation “-” indicates that the method oper-
ates without requiring communication.)

Category H Model ‘ Training Time (s) ‘ Memory Usage (MB) ‘ Communication Cost (MB)
SGBot 4.96+0.12 1,167.11%32.71
Centralized || BotRGCN 17.83+0.42 926.21+19.67
BotBR 0.17+0.03 14.85+9.38 -

FedAvg 2.16£0.37 255.43+2.71 390.530.00

FedProx 8.171+1.04 183.12+0.45 22.78+0.00

FL FedPer 5.58:+0.50 80.92:+8.90 16.406:0.00

FedBN 12.91+0.96 203.23+5.00 302.43+0.00

FedSea 20.65+0.16 262.62+2.01 292.900.00

D-PSGD 6.37+037 181.36+0.87 62.4240.00

DFL SGP 4.57+0.01 46.582+1.95 28.36+0.00

FedMod 3.80+0.21 1,782.25+5.05 33.88+0.00

Ours FediScan 1.59 +0.03 399.99+0.10 115.59+0.00

4.5 Hyperparameter Sensitivity Analysis

In this section, we investigate the hyperparameter sensitivity of
FediScan. We focus on three critical parameters, including (1) the
number of local training epochs, (2) the top-k neighbor selection in
the communication process, and (3) the noise scale of the feature
augmentation strategy. Figure 4 presents the model sensitivity with
respect to F1-score under varying settings.

0.7 0.7 0.7
206 © 0.6} 2 0.6
3 9] 9]
Q Q Q
7 P °
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Figure 4: Sensitivity analysis of FediScan w.r.t (a) different
number of epochs, (b) different number of top-k neighbors,
and (c) different noise scales

Effect of local training epochs. We analyze how changing the
number of local training epochs influences the detection perfor-
mance of FediScan. As shown in Figure 4(a), local training epochs
are set within the range [1, 2, 5,8, 10]. Increasing local epochs im-
proves the F1-score, as more local updates allow the model to bet-
ter adapt to instance-specific data distributions. However, further
increasing the local training epochs beyond 8 leads to a gradual
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decline in performance due to overfitting on local data within the
high heterogeneity environment. In our experiment, the optimal
value is chosen as 8, achieving a balance between local adaptation
and global generalization.

Effect of top-k neighbor selection. We examine how varying
the number of neighbors (top-k), ranging from [1, 2, 5, 8], affects
the detection performance of FediScan. All other hyperparameters
are fixed, except for the number of clients. The results are shown
in Figure 4(b). When k is too small, the model lacks sufficient cross-
instance knowledge sharing, resulting in suboptimal performance.
Conversely, a larger k introduces noisy or irrelevant neighbors,
degrading performance due to misaligned modality distributions.
FediScan achieves the best performance at k = 2, where each in-
stance selects two suitable peers for communication.

Effect of different noise scales. The noise scale determines the
augmentation scale of multimodal representations in the feature
augmentation strategy. The optimal noise scale of 0.001 is chosen
to guide our model. As depicted in Figure 4(c), a lower noise scale
reflects that we generate more similar embeddings to the original
multimodal representations. This could introduce more stable aug-
mentation and help our model handle the label imbalance issue,
thereby achieving robust social bot detection.

5 Conclusion and Future Work

In this paper, we have investigated the problem of social bot detec-
tion in decentralized online social networks. We presented FediS-
can, a decentralized federated learning method to address this
problem. We identified three key challenges, including label imbal-
ance, modality heterogeneity, and peer selection. We introduced a
modality-specific data augmentation strategy and a semantic-aware
communication protocol to tackle them. FediScan is flexible enough
and could be utilized in other similar applications in decentralized
online social networks [1, 12, 43]. Extensive experiments demon-
strate that FediScan not only sets a new benchmark in this domain
but also significantly advances the state-of-the-art in a Mastodon
dataset featuring comprehensive multimodal information across all
evaluation metrics.

For future work, we aim to adapt FediScan for broader practical
application scenarios within the Fediverse. Also, we will further
evaluate our framework in other decentralized online social net-
works. In addition, we plan to incorporate other modalities, such
as video data, to further enhance our detection.
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A Convergence Analysis

We examined the convergence trend of FediScan and other methods.
As depicted in Figure 5, our approach converges rapidly, requiring
only about 2 rounds to reach an F1-score > 0.58 and 10 rounds to
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achieve the final performance. These results indicate that FediScan
achieves a favorable trade-off between detection performance and
efficiency cost, making it suitable for deployment in decentralized
online social networks.
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Figure 5: Rounds v.s. F1-score across different methods. FediS-
can converges fast due to its augmented multimodal repre-
sentations and semantic-aware communication.

B Model Robustness Analysis

To evaluate the impact of backdoor injection on the performance of
FediScan, we construct a set of malicious instances under varying
multiple malicious ratio settings (10%, 20%, 30%, 40%, 50%). We
employ backdoor injection only for malicious instances. During
the training process, we randomly select users from each batch of
malicious instances. These users are embedded with the trigger and
modified to the target class. We assess model performance using
two metrics, F1-score and attack success rate (ASR) [13, 58]. ASR is
widely used to evaluate the effectiveness of an attack. As shown in
Figure 6, increasing the backdoor ratio leads to a small decrease in
F1-score and a corresponding slight rise in ASR, indicating that our
model maintains considerable robustness under backdoor attacks.
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Figure 6: Model robustness across different backdoor ratios
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