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Abstract—Online-to-Offline (O2O) e-commerce services and
their users confront a spectrum of fraud risks, where financial
identity theft is prevalent and severe. However, current approaches
are inadequate to cover such fraud. To address this problem,
we consider both environmental entity interactions and activity
sequences to model more granular user behaviors. According to
our preliminary study, we discovered that fraudulent users exhibit
high aggregations of various environmental entities and fraudulent
individuals using the same personal ID that features diverse inter-
actions with different environmental entities. We further investi-
gate the abnormal behaviors of individual fraudsters. Motivated
by these discoveries, we propose a deep learning-based behavior
modeling framework named EnvIT to capture the above behavior
patterns. Therefore, EnvIT is sufficiently general to learn user
representations for various e-commerce fraud situations. Extensive
experiments are conducted on two real-world datasets provided
by Meituan and Vesta, respectively. The results demonstrate the
superiority of our method, with a 0.17%-13.50% improvement
in AUC and 1.13%-22.57% in R@90%P on the Meituan dataset,
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and a 0.71%-11.94% improvement in AUC and 2.99%-21.19% in
R@90%P on the Vesta dataset, respectively.

Index Terms—Identity theft, financial fraud detection, graph
neural networks, behavioral modeling.

I. INTRODUCTION

THE advent of Online-to-Offline (O2O) e-commerce ser-
vices has revolutionized the way we live. These services

facilitate online purchases of goods and services [1], as well as
the application for loans [2]. However, these conveniences are
accompanied by various fraud risks. According to reports from
the Federal Trade Commission (FTC) [3], identity theft cases
topped the list of reported issues among all categories. The FTC
defines identity theft as a pervasive fraud risk that refers to the
unauthorized use of personal or financial information of an indi-
vidual for fraud activities [4], [5]. In addition to the individuals’
names, the private information contains their Social Security
Numbers,1 credit card numbers, and bank account details. Due
to financial identity theft, both individuals and online platforms
may suffer financial losses and reputation damage [6]. The risk of
identity theft has evolved with the adaptation of various methods,
including phone number recycling [7], phishing [8], and account
hijacking [9]. Among these, phone number recycling [7] is a
prevalent practice for fraudsters, as recycled mobile numbers
are linked to authenticated accounts on e-commerce platforms.2

The rapid growth of e-commerce has inadvertently contributed
to the prevalence of financial identity theft [11]. For example,
fraudsters may steal others’ credit card information to make
purchases or misuse others’ identity information to take out
loans. Therefore, it is imperative to detect identity theft fraud
to guarantee the safety of online financial transactions within
the realm of e-commerce.

Recent studies [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28] leverage deep
learning techniques to detect fraud users by learning user rep-
resentations from users’ historical behaviors, social networks,

1https://www.ssa.gov/history/ssn/geocard.html
2Verified accounts refer to those users who have completed the identity

verification process with identity cards or bank cards on e-commerce platforms.
Recently, user authentication on several prominent platforms in China, such
as Taobao and Meituan, relies on Short Message Service (SMS) One-Time
Password messages [10]. Consequently, fraudsters can exploit reassigned mobile
numbers to gain access and assume control of these verified accounts.
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and user profile information. These techniques fall into two main
categories: sequence-based techniques and graph neural network
(GNN)-based techniques. Sequence-based techniques differen-
tiate fraudulent accounts from normal ones by leveraging the
history of sequential behavior [5], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [29], [30], [31]. However, they overlook the
intricate interconnections between financial accounts, which are
critical to identifying fraud gangs. GNN-based studies facilitate
graph structures to model the relationships between users and
other entities and learn their representations with GNNs [21],
[22], [23], [24], [25], [26], [32]. Most approaches (e.g., [21],
[22], [23]) utilize the aggregations of environmental entities,
such as IP addresses or devices (e.g., Media Access Control
Address and International Mobile Equipment Identity of the
device) to detect fraud groups. However, these methods are
based on the assumption that fraudsters typically operate within
interconnected groups, linked by a limited number of devices
or IP addresses. Consequently, these approaches fall short in
effectively identifying individual fraudsters. Moreover, several
leading e-commerce platforms such as Taobao and Meituan,3

permit multiple verified accounts to be associated with a single
personal ID4 [33]. As a result, there might be differences in
devices and IP addresses among verified accounts sharing the
same personal ID. These distinctions could potentially serve as
indicators to discern whether these accounts are linked to the
same individual. However, current research has not yet fully
exploited these significant distinctions in addressing the issue
of detecting financial identity theft on e-commerce platforms.

We have investigated actual cases of financial identity theft
on Meituan, a famous O2O e-commerce platform in China that
provides services related to local life and finance [34], [35]. To
understand fraud patterns at different levels, we investigate the
suspicious activities exhibited by fraudulent accounts and the
links between the accounts and the entities in the access envi-
ronment. In this work, we consider the IP addresses, devices, and
transmission addresses used by the accounts as access environ-
ment entities. To deeply understand the characteristics of fraud-
ulent behaviors in financial identity theft, we summarize three
types of typical patterns from real data and analyze the modeling
challenges they cause and the modeling limitations of existing
methods: (1) environment aggregation, i.e., multiple fraudulent
accounts share the same devices, IPs, or addresses, which makes
it difficult for sequence models to model inter-account relation-
ships, and the existing GNN methods are difficult to differentiate
between normal and abnormal sharing, which makes it easy
to introduce noise; (2) environmental difference, which means
that although multiple accounts share the same personal ID
information, their associations with environmental entities, such
as devices or other accounts, exhibit significantly different struc-
tural patterns. Some fraudulent accounts are primarily connected
via a large number of device nodes, while others establish con-
nections through shared identity nodes. These distinct patterns
reflect different fraud strategies and are challenging for existing

3https://about.meituan.com/en
4In this context, “ID” stands for the resident identity card, i.e., an official

document used for personal identification in China’s mainland.

models to distinguish or interpret effectively; and (3) behavioral
characteristics, which means that individual fraudulent accounts
show concentrated or repetitive operations in a short period of
time, and GNNs are unable to depict the temporal dynamics,
while sequential models do not integrate the structural and
identity contextual information. These challenges indicate that
existing methods have significant shortcomings in modeling
multidimensional fraudulent behaviors, which motivates us to
propose a new approach that fuses graph structure and behavioral
modeling to effectively identify such complex fraud patterns.

Guided by these observations, we model the complex
interactions between accounts and various entities with different
graph structures (a heterogeneous environment graph and a
homogeneous account graph). We propose a framework named
EnvIT for identity theft detection. Our framework takes into
account both the associations across the environmental entities
and the historical activities of the accounts. Specifically, EnvIT
is composed of five key components: environmental aggregation
extractor, environmental difference extractor, behavior feature
extractor, attentive feature fusion module, and detection layer.
The design of the environmental aggregation extractor is utilized
to generate deep representations of environmental aggregation
from the heterogeneous environment graph. This module has
the capability to include fraud groups exhibiting the first fraud
pattern: environmental aggregation. The design of the environ-
mental difference extractor is employed to learn the embeddings
of environmental differences in the accounts from the homoge-
neous account graph. This module could cover fraudulent ac-
counts with the second fraud pattern: environmental difference.
The behavior feature extractor module is designed to extract be-
havior representations from historical behavior sequences from
the account. This module could detect individual fraudsters with
the third fraud pattern of abnormal temporal behavior activities.
With these three components, EnvIT could learn informative
account representations under different e-commerce fraud sit-
uations. A previous version of this work [36] only considered
heterogeneous and homogeneous graph structures. To achieve a
robust fusion of various representations from these three mod-
ules covering complex situations, we introduce the self-attention
mechanism and design a module named the attentive feature
fusion module. As described in [16], [37], [38], the attention
weights of this module could enhance the interpretability of
the detection results. Finally, a detection layer determines the
likelihood of an account being fraudulent.

To summarize, this work makes the following contributions:
� To our knowledge, this study is the first to tackle the issue

of financial identity theft in O2O e-commerce platforms. It
formulates the problem from various graph perspectives
to capture intricate relationships between accounts and
environmental entities.

� We analyze users’ behavioral patterns according to the
dataset from Meituan, one of China’s top O2O e-commerce
platforms. We study and summarize fraud patterns from
different perspectives, including environmental associa-
tions and behavioral activities.

� We propose EnvIT, a novel framework designed to detect
financial identity theft by leveraging both the associations
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across various environmental entities and the historical
activities of accounts. EnvIT leverages three powerful
components to capture comprehensive account represen-
tations in various e-commerce fraud scenarios, including
environmental aggregation, environmental difference, and
historical behavior. These representations are then fused
using an attention mechanism to enable effective fraud
detection.

� We evaluate the performance of EnvIT on two real-world
datasets from two leading e-commerce platforms. Our ex-
perimental findings indicate that EnvIT surpasses several
state-of-the-art methods and is capable of detecting more
fraud than Meituan’s current solution. Furthermore, we
conduct an interpretability analysis of the attention weights
across meta-paths on two datasets.

II. RELATED WORK

Recently, there has been a surge in the development of deep
learning approaches to detect various forms of financial fraud.
Notably, approaches with sequence and graph learning have
gained significant popularity in this domain.

Sequence-based methods employ neural networks like Con-
volutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN) to analyze users’ historical behavior. For example,
Liu et al. [18] presented Local Intention Calibrated Tree-LSTM
(LIC Tree-LSTM) to capture the specific fraudulent intention
and build a behavior tree according to the transaction sequences
for each user. Branco et al. [17] employed Gated Recurrent Units
(GRU) to model users’ payment behaviors as interconnected
sequences for the task of credit card fraud detection. Babaev
et al. [14] also utilized GRU to predict credit scores for applicants
based on their loan records. Cheng et al. [15] developed a
framework for dynamic default prediction with Gated LSTM.
This framework leveraged loan behaviors to forecast repayment
delinquency in the context of networked-guarantee loans. Guo
et al. [12] designed HAInt-LSTM with a modified forget gate,
which can be used to recognize fraud patterns from intervals
between consecutive time steps. Xiao et al. [39] presented a Mul-
tiview row-INteractive Time-aware framework to detect fraud-
ulent behaviors from time-series data. Xie et al. [40] designed a
time-aware gate and combined an LSTM to learn users’ transac-
tion representations. Gao et al. [41] introduced a temporal pattern
encoder and a statistical feature encoder aimed at identifying
accounts compromised due to phone number reassignment. Xie
et al. [42] modeled user behaviors from both time-aware and
location-aware perspectives and presented a spatial-temporal
gated model to learn representations of new transactions based
on historical transactions. These approaches capture temporal
patterns effectively, making themselves particularly useful for
detecting fraudulent behaviors. However, they typically model
each account independently, failing to take advantage of the
complex interactions between users and environmental enti-
ties (e.g., IPs, devices, and delivery addresses). As a result,
they are limited in identifying coordinated fraud, such as fraud
gangs operating multiple accounts with shared personal IDs or
devices.

Numerous studies [23], [43], [44], [45], [46], [47], [48]
have demonstrated the effectiveness of graph neural networks
(GNNs) [49] in the detection of financial fraud. These studies
encompass methods for identifying fraudulent transactions [50],
[51], predicting loan defaults [52], [53], detecting insurance
fraud [22], and identifying cash-out users [24]. Among them,
Fang et al. [25] presented mHGNN to identify illicit transac-
tions and constructed an attributed heterogeneous information
network (AHIN) to capture intricate interactions among entities,
including topics, products, and comments. Similarly, Zhong
et al. [26] designed MAHINDER, a fraud detection model that
relies on a multiview AHIN for the identification of credit
default fraud. Hu et al. [24] developed HACUD, a detection
model equipped with a hierarchical attention mechanism de-
signed to identify cash-out users within credit card payment
services. Xu et al. [54] presented a Spectrum-Enhanced and
Environment-Constrained Graph Fraud Detector (SEC-GFD) to
detect fraud by leveraging spectrum and label information. Liu
et al. [21] presented GEM, a study focused on analyzing ag-
gregation patterns derived from devices and temporal activities
associated with malicious accounts in user-device graphs. Wang
et al. [55] developed a semi-supervised graph attentive network
specifically designed for fraud detection using a multi-view
graph (i.e., users’ relationships, attributes, and devices). Xiang
et al. [43] presented a Gated Temporal Attention Network to
detect credit card fraud. In the context of financial identity
theft detection on e-commerce platforms, existing graph-based
methods, including those that use heterogeneous graphs, have
shown strong capabilities in modeling multiple relations. How-
ever, they often struggle to effectively capture fraud patterns
related to environmental contexts. Specifically, in environmental
aggregation scenarios, fraudulent accounts might share the same
devices, IPs, or addresses, forming high-aggregation patterns,
while in environmental difference cases, accounts linked to the
same personal ID may appear in diverse environmental relations
to evade detection. Current models do not account for these
different fraud patterns.

To address these challenges, our method jointly models both
the differences between verified accounts sharing the same per-
sonal ID and their interactions between environmental entities
and temporal behaviors, enabling more effective detection of
diverse and complex identity theft patterns. Table I offers a
comparative summary of representative approaches in terms
of their ability to model graph structures, heterogeneity, and
behavioral sequences. As shown in the comparison, most ex-
isting methods capture only one or two of these dimensions,
whereas our approach integrates all three, allowing for a more
comprehensive and robust detection of identity theft behaviors.

III. CASE ANALYSIS

A. Dataset and Preliminary Exploration

Meituan offers a range of services related to daily life, in-
cluding delivering food, booking taxis, and purchasing tickets
online. Additionally, Meituan has developed a consumer finance
business that offers consumer loans to enhance users’ purchasing
capabilities. For this study, a dataset was obtained from the
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TABLE I
COMPARISON OF REPRESENTATIVE MODELS IN MODELING KEY ASPECTS OF

FINANCIAL IDENTITY THEFT BEHAVIORS

consumer finance business department of Meituan. There are
15,350 sampled accounts that had applied for loans before
June 2020 in the dataset. There are also 6,993 additional ac-
counts in the dataset that underwent verification using the same
IDs as the sampled accounts. We have anonymized personal
ID-related information through a hash function and excluded
sensitive data to maintain user privacy. There are three types
of accounts in the dataset: normal, fraudulent, and unlabeled.
Normal accounts exhibit regular loan behavior, characterized
by punctual repayment and full settlement of all loans, and
are manually reviewed to ensure stability and compliance. In
contrast, fraudulent accounts are initially identified from user
feedback. Users provide feedback in cases where they receive
collection calls for unauthorized overdue loans when reviewing
their credit reports. It is important to highlight that every fraud
label is manually checked by a team of risk control specialists to
guarantee their accuracy and reliability before being ultimately
added to the dataset. In addition to the two categories of clearly
labeled accounts mentioned above, the remaining accounts are
classified as unlabeled accounts. Since these unlabeled accounts
might contain potential fraudulent activities, we adopt a semi-
supervised learning strategy. This approach not only uses the
labeled accounts for supervised training but also fully involves
the unlabeled accounts in the message passing mechanism to
enhance our model’s ability to capture potential fraudulent
behaviors. The imbalanced distribution between normal and
fraudulent accounts may result in suboptimal performance of
fraud detection models, particularly for the minority class, i.e.,
the fraudulent accounts [56]. Therefore, we employ an under-
sampling strategy to exclude a portion of normal accounts.
Additionally, the dataset encompasses fundamental account de-
tails, loan application dates, and historical activities, including
logins, payments, and delivery orders spanning from January
2018 to June 2020. For accounts that have applied for a loan,
an approval process is conducted before the loan is disbursed.
The objective is to determine whether identity theft is involved
in the account approval process. Consequently, we exclude
post-loan application activities for each account, while retaining

TABLE II
STATISTICS OF THE MEITUAN DATASET

Fig. 1. The relationships between accounts and environmental entities. Node
colors represent different types of nodes: blue for normal accounts, red for
fraudulent accounts, purple for unlabeled accounts, yellow for IP addresses,
green for devices, cyan for delivery addresses, and black for personal IDs. Node
size is proportional to node degree. Edge color reflects the label of the source
node, e.g., blue for edges emitted from normal accounts.

the complete historical behaviors of accounts without a loan
application. The statistical overview of the processed dataset
is presented in Table II. To provide an intuitive understanding
of the environmental aggregation and difference patterns of
accounts, we visualize the relationships between accounts and
environmental entities based on the Meituan dataset, as shown
in Fig. 1.

Environmental Aggregation Analysis: We obtained the IP
address and device details associated with the user’s account
from the user’s login record. Fig. 1(a), (b), and (c) illustrate
subgraphs where account nodes are linked to IP addresses (nodes
in yellow), devices (nodes in green), and delivery addresses
(nodes in cyan), respectively. We find that these three subgraphs
present similar results, i.e., fraudulent accounts (nodes in red)
exhibit more IP addresses, devices, and delivery addresses as-
sociated with them than normal accounts (nodes in blue). These
findings indicate that there are aggregations of IP addresses,
devices, and delivery addresses in fraudulent accounts, which
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suggests that these accounts may be constituted as fraudulent
gangs. Therefore, all three types of environmentally associated
entities can be used as potential information for capturing more
sophisticated behaviors by fraudulent teams.

Environmental Difference Analysis: As shown in Fig. 1(d),
personal IDs are shared with different accounts that are linked
to environmental entities with large differences. Here, the dif-
ferences are manifested in two ways: one part of the fraud ac-
counts (nodes in red) establishes extensive association networks
through a large number of devices (nodes in green), reflecting
the characteristic of using devices as the main directly associ-
ated objects; the other part of the fraud nodes forms complex
connections with other accounts more through personal IDs
(nodes in black), exhibiting the characteristic of using personal
information as the directly associated environmental nodes. It
is important to distinguish between these two different environ-
mental associations, as they reflect different fraud strategies.

Behavior Characteristics Analysis: We thoroughly examined
login and payment activities, revealing that the accounts engaged
in fraudulent activities exhibit notably unusual historical behav-
iors. In particular, certain accounts demonstrate a significantly
elevated frequency of login or payment transactions within
condensed timeframes, particularly during late-night hours. In
addition, these accounts often exhibit login attempts originating
from multiple disparate locations or devices within a short
period of time, further distinguishing their behavior from that of
legitimate users.

All these findings provide valuable insights and motivate us to
design corresponding components for capturing specific fraud
behaviors in our subsequent model design by modeling account
behaviors and complex connections.

IV. ENVIT FRAMEWORK

A. Problem Formulation

Based on information from environmental associations and
historical activity sequences, we aim to ascertain whether a
verified account is being operated by a fraudster. This objective
can be viewed as a binary classification problem.

Given the associations between environmental entities and the
activity details of user accounts, along with the hashed values of
their verified personal IDs, we can build a heterogeneous envi-
ronment graph Ge = (U ,D, E ,R) and a homogeneous account
graph Ga = (U , Ea). The set of account nodes is denoted as U ,
and different environmental entity nodes (such as IP nodes and
device nodes) are represented by D. The E denotes the set of
edges between two adjacent nodes. Each edge type refers to a
particular relationship. And R denotes the set of relationships
that occur between account nodes and environmental entity
nodes. A relationship can be the interaction or usage between an
account node and an environmental entity node. Each ermij ∈ E
represents the connection between an account node i ∈ U and
an environmental entity node j ∈ D, defined by the relationship
rm ∈ R. The access environment (e.g., IP address and device)
is characterized by multiple types of entities with a total of
M types, i.e., M = |R|. Additionally, characteristics such as
gender and age are considered features for each account. The
ground-truth labels for the account nodes are denoted as Y . The

Ea represents the set of edges connecting neighboring nodes in
Ga. The accounts u ∈ U and v ∈ U are verified using the same
personal ID for each edge eauv ∈ Ea.

From the historical behaviors of the accounts, we derive a
behavior sequence S = [s1, s2, . . . , sT ]. Within this sequence,
si(i ∈ {1, 2, . . . , T}) represents the embeddings of the behav-
ior, and T refers to the duration of the sequence. Each behavior
record encompasses various aspects, including the time interval,
time slot, GPS location, and login IP address. The summary of
main notations and definitions is listed in Table III.

B. The EnvIT Model

1) Model Overview: In this section, we provide a detailed
introduction to the EnvIT model. Fig. 2 shows the overall
framework of our proposed model. Specifically, EnvIT is made
up of five modules: the environmental aggregation extractor,
the environmental difference extractor, the behavior feature
extractor, the attentive feature fusion module, and the detec-
tion layer. The initial three components leverage diverse data
sources, including logs, behavioral sequences, and other relevant
information, to comprehensively analyze and model the intricate
relationships between the account and its surroundings. The first
module focuses on capturing the representations derived from
the association of the account with environmental factors. The
second module concentrates on the account divergence within
the environment. The third module draws upon the historical
behavior patterns of the accounts. Subsequently, the module of
attentive feature fusion is designed to fuse embeddings from
the preceding three modules. Finally, the detection layer is
responsible for forecasting the likelihood of an account being
fraudulent.

2) Environmental Aggregation Extractor: To achieve a more
accurate representation of accounts, we utilize environmental
aggregation techniques that capture the nuanced behaviors and
interactions within the social network. To generate the initial
embeddings X for all account nodes, we embed their attribute
features with a fully connected layer. The initial embedding of
each environmental entity node j in the heterogeneous graph
Ge is randomly initialized to xj . Here, the account node i’s
embedding xi and environmental entity node j’s embedding
xj have the same dimension d. In our heterogeneous graph,
we incorporate multiple meta-paths to capture diverse envi-
ronmental relationships between accounts, devices, IPs, and
locations. Specifically, we consider the following meta-paths
to model heterogeneous relationships among accounts and their
associated environmental entities:
� Account-Device-Account (A-D-A): This meta-path cap-

tures the interaction between accounts that share the same
device, potentially indicating device-based aggregation ac-
tivities.

� Account-IP-Account (A-I-A): It models the relationships
between accounts that originate from the same IP prefix,
revealing potential clusters of accounts associated with a
common network environment.

� Account-Location-Account (A-L-A): This meta-path rep-
resents accounts that share the same geographic location,
suggesting possible geographical correlations.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 13,2026 at 14:10:52 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: FINE-GRAINED BEHAVIORAL MODELING WITH GRAPH NEURAL NETWORKS FOR FINANCIAL IDENTITY THEFT DETECTION 5591

Fig. 2. An illustration of the EnvIT framework for detecting identity theft. EnvIT comprises five components: an environmental aggregation extractor, an
environmental difference extractor, a behavior feature extractor, an attentive feature fusion module, and a detection layer. Firstly, the input graph data and user
features are encoded via the first two components, and the input behavior sequences are encoded via the third component. Then, the encoded outputs from the top
three components are fused via the attentive feature fusion module. Finally, in the rightmost part, the detection layer is used to detect fraudulent accounts.

� Device-Account-Device (D-A-D): This meta-path reflects
the relationships among devices that are used by the same
account and provides valuable insights into the device-
based usage patterns of accounts.

� IP-Account-IP (I-A-I): This meta-path refers to the re-
lationships between IP addresses that are shared with the
same account. It captures the semantic pattern of an account
being linked to multiple IP addresses. The I-A-I path
is beneficial for detecting network-level anomalies, such
as IP spoofing, which are commonly used in fraudulent
activities.

� Location-Account-Location (L-A-L): This meta-path
represents the relationships between locations that
are associated with the same account. It models
the semantic pattern of an account being linked to
multiple locations. This meta-path is particularly useful in
identifying accounts that exhibit suspicious location-based
patterns.

These meta-paths are carefully selected based on domain
knowledge in fraud detection, where shared environmental en-
tities, such as devices, IP addresses, locations, and network
information, often serve as indicators of coordinated behavior.
Then, we denote the meta-paths [57] as Pm = U→Dm→U
in the heterogeneous graph Ge. By leveraging this represen-
tation, we can identify the meta-path-based neighbors of each
account node. We recognize that each account node has a unique
impact on the targeted account node i. To address this, we
used the Graph Attention Network (GAT) [58] to update the
representation of the targeted account node by aggregating
messages from its neighboring nodes. The process can be sum-
marized as hmk

i = σ(
∑

v∈N (i)m αmk
iv Wmkhmk−1

v ), where the
neighbors of node i under meta-path Pm, are represented as
N (i)m with m ∈ {1, . . . ,M}. The representation of account
node i is denoted as hmk

i , with Wmk representing a learnable

weight matrix at the k-th hidden layer. Additionally, the rep-
resentation of each account node i in the 0-th hidden layer is
denoted as xi. The ReLU activation function is represented by
σ(·). Moreover, αmk

iv denotes the attention score between node i
and v at the k-th hidden layer under meta-pathPm. The attention
score can be computed as follows:

αmk
iv = softmax

(
LeakyReLU

(
�aT

[
zmk−1
i || zmk−1

v

]))
, (1)

where zmk−1
i = Wmkhmk−1

i , and �a refers to a vector of learn-
able parameters. The transposition and concatenation operations
are represented by ·T and ||, respectively. Here, the attention
score reflects the relative importance of neighboring accounts
connected via different meta-paths, which can reveal potential
risk relationships. For example, if an account assigns higher
weights to another account that shares the same device, this
may indicate a coordinated fraudulent pattern through a shared
device.

With the total number of hidden layers being Ka, the output
of the final hidden layer of the account node i on the meta-path
Pm is represented as hmKa

i , which can be simplified as hm
i .

Hence, the environmental aggregation of each account i can be
calculated by ha

i =
∑M

m=1 h
m
i .

3) Environmental Difference Extractor: According to the
heterogeneous environment graph Ge, we have retrieved the
environmental representation for each account node. Subse-
quently, we compute the environmental differences among ver-
ified accounts that possess identical personal identification.
To better capture the distinct relationships between account
nodes and different types of environment entities, we parti-
tion the heterogeneous environment graph Ge into multiple
bipartite sub-graphsGr1

e ,Gr2
e , . . . ,GrM

e , where r1, r2, . . . , rM ∈
R. Each sub-graph Grm

e (m ∈ {1, . . . ,M}) contains only the
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TABLE III
SUMMARY OF KEY NOTATIONS AND DEFINITIONS

edges linking account nodes to a specific category of envi-
ronment entities. In our setting, we define three environment
categories based on commonly observed contextual features
in fraud detection scenarios: device identifiers (Device), IP
addresses (IP), and delivery addresses (Address). Thus, we
set R = {Device, IP,Address}, resulting in M = 3 bipartite
sub-graphs.

Each bipartite sub-graphs on one particular type of environ-
mental interaction, allowing our model to better capture potential
behavioral patterns in that specific context. For example, the
sharing of the same device across multiple accounts might
indicate coordinated control, while the use of different devices

under the same personal ID might imply attempts at identity
theft. This decomposition enables our model to disentangle the
semantics of different environmental relations, helping to avoid
information noise caused by mixing heterogeneous node types
in the message-passing process.

Inspired by GraphSAGE [59], a GNN variant known for
its powerful inductive learning on various graphs, we utilize
this module to update the embeddings of account nodes by
aggregating information from the interconnected environmental
entity nodes. This can be described as follows:

hrmk
i = σ

(
W rmk−1 · MEAN

({
hrmk−1
j

}))
, (2)
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where hrmk
i refers to the account node i’s representation at the

k-th hidden layer of sub-graph Grm
e . The set of environmental

entity nodes associated with account node i in the sub-graphGrm
e

is denoted by N (i)rm , where j ∈ N (i)rm . We begin by setting
hrm0
i = xi and hrm0

j = xrm
j . The MEAN function operates on

each vector hrmk−1
j in an element-wise mean manner, and σ(·)

represents the ReLU activation function. The trainable parame-
ters are denoted as W rmk−1. Here, Ke refers to the total number
of hidden layers. For account node i, its final representation
from the hidden layer is hrmKe

i , denoted as hrm
i . To derive the

environment embeddings for each account node, we compute
the element-wise sum of its representations at the final hidden
layers across all sub-graphs by he

i =
∑M

m=1 h
rm
i .

For each node i in the homogeneous account graph Ga,
we initialize its representations with the learned environmental
embeddinghe

i . GraphSAGE model is utilized on graphGa to cap-
ture the environmental difference among the verified accounts
sharing the same personal ID. As a result, for each account i, the
representation of the environmental difference at the k-th hidden
layer can be calculated by hk

i = σ(W k−1 ·MEAN({hk−1
v })) ,

where v ∈ N (i) and N (i) refers to the account nodes sharing
the same personal ID with the account node i. h0

i is initialized
as he

i . The MEAN and σ(·) functions mentioned above remain
the same. The total number of hidden layers is Kd. The output
of the last hidden layer, denoted as hd

i , can be simplified from
hKd
i .
4) Behavior Feature Extractor: We design the behavior fea-

ture extractor to obtain a deep representation of the historical
behavior sequences for each account. It is common for malicious
behavior to occur suddenly and be concentrated within a short
period of time in practical scenarios. As a result, the time interval
between consecutive behavior events plays a crucial role in
identifying abnormal behavior. To encode the behavior of ac-
counts, we employ the Time-Aware LSTM (T-LSTM) [60]. This
modified version of Long-Short Term Memory (LSTM) [61]
takes into account the time interval between successive events
within a sequence. The formalization of T-LSTM is as follows:

cSt−1 = tanh (Wdct−1 + bd) , (3)

cSt−1
′
= g (Δt) ∗cSt−1 , (4)

cLt−1 = ct−1 − cSt−1 , (5)

ct = ft∗
(
cLt−1 + cSt−1

′)
+ it∗ tanh (Wcst + Ucht−1 + bc) ,

(6)

ht = ot∗ tanh (ct) , (7)

where the cell memories at time step t and previous time step
t− 1 are represented as ct and ct−1, respectively. The cSt−1 and
cLt−1 are the short-term and long-term memory of the cell at the
previous time step t− 1, respectively. st denotes the input of
behavior event at time step t. The hidden states at time step t
and previous time step t− 1 are represented as ht and ht−1, re-
spectively. Additionally, we have forget, input, and output gates,
which are ft, it, and ot, respectively. In T-LSTM, a function
g(Δt) is utilized to discount the short-term memory of the cell

at the previous time step. This function depends on the time
interval Δt between two consecutive behavior events and can
be expressed by g(Δt) = 1

log (Δt+e) . As a result of the function

g(Δt), the previous cell’s short-term memory cSt−1 is adjusted
to cSt−1

′
. Importantly, the larger the time interval between two

consecutive behavior events, the less short-term memory will
be retained. In T-LSTM, {Wd, bd} are learnable parameters of
subspace decomposition. {Wc, Uc, bc} are learnable parameters
of candidate values. Here, the σ(·) denotes a sigmoid layer. To
obtain the behavior representation of the account, we take the
sum of all the hidden states of the cells at different time steps.
This can be expressed as hb

i =
∑T

t=1 ht.
5) Attentive Feature Fusion Module: There may be differ-

ences in the significance of environment and behavior-related
features when handling various fraudulent accounts. As a re-
sult, combining these features through simple concatenation or
addition may not yield optimal results. To address this, atten-
tion mechanisms can be employed to focus more on important
information. This enables better integration of the features and
enhances the overall performance of the model. To learn the
attention scores of different representations, we utilize the self-
attention mechanism [62]. We combine the representations of
account i to create a matrix, which serves as the input of the
attentive feature fusion module. Let H = Concat(hd

i , h
a
i , h

b
i )

T ,
where hd

i , ha
i , hb

i are the learned embeddings from three ex-
tractors. The Concat denotes the concatenation function, and
·T is the transposition operation. We apply a scaled dot-product
self-attention mechanism to compute the attention output matrix.
This process can be denoted as

HAttn
i = softmax

(
QiK

T
i√

dk

)
Vi , (8)

where Qi = HiWQ, Ki = HiWK , and Vi = HiWV are the
query, key, and value matrices, respectively. WQ, WK , and WV

are learnable projection matrices, and dk is the dimension of
the key matrix. Then, we compute the final fused representation
using hAttn

i =
∑3

j=1 H
Attn
i [j, :], achieved by summing over the

rows of HAttn
i . Here, j refers to the j-th row of the learned

attention output matrix. This operation aggregates the weighted
semantic embeddings from different environmental relations
into the final fused representation of accounts.

6) Detection Layer: The detection layer of EnvIT comprises
a fully connected layer and a softmax layer. The final predicted
fraud probability of the model for user i can be obtained by
ŷi = softmax(W f

i h
Attn
i + bfi ), where the output of the attentive

module is projected into a two-dimensional space with the
learnable weight matrix W f

i and the learnable bias matrix bfi .
We use Ŷ denoting the predicted labels for all account nodes.

C. EnvIT Algorithm and Model Optimization

Algorithm 1 outlines the detailed process of EnvIT. Line 1
initializes the model by setting up its three main components
and the necessary parameters. Lines 2-10 illustrate the training
process of EnvIT. Specifically, Lines 3-5 describe the process of
extracting node representations based on EnvIT’s three essential
components. In Line 6, these representations are fused using the
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Algorithm 1: EnvIT Algorithm.

AttentionFusion module. Line 7 generates the predicted output
of EnvIT. Lines 8-9 handle the computation of the loss and
the update of model parameters. After training converges, we
save the optimized model as the best model, and the learned
representations of the account nodes can be derived. Line 11
involves the loading of the best model, and Lines 12-13 perform
inference on the test dataset, producing the final predicted labels.

To train our model, we employ the cross-entropy loss function,
defined as L = −∑N

i=1(yi log (ŷi) + (1− yi) log (1− ŷi)),
where yi represents the true label of account i, which indicates
whether the account i is categorized as normal or fraudulent.
The total number of accounts is denoted as N . It should be
noted that practical scenarios may involve unlabeled accounts.
Consequently, we focus on the loss function exclusively on
labeled accounts and adopt a semi-supervised training strategy
for the proposed EnvIT model.

V. EXPERIMENTS

A. Experimental Setup

1) Dataset: We evaluate the detection performance of En-
vIT on two datasets from different leading platforms. The first
dataset, described in Section III-A, represents one of the sce-
narios of identity theft fraud on e-commerce platforms. In this
particular scenario, fraudsters pretend to be others to take out
loans in consumer financial services. We assign labels of 1, 0, and
-1 to the fraudulent accounts, normal accounts, and unlabeled
accounts, respectively. To create the heterogeneous graph, we
extract detailed information such as the initial three bytes of
the IP addresses, the device UUIDs derived from the login
records, and the latitude and longitude values obtained from
delivery addresses. This graph establishes connections between
accounts and various entities within the access environment.
Additionally, we build a homogeneous graph consisting of the
verified accounts sharing the same personal ID.

The other dataset5 is from Vesta Corporation,6 one of the
world’s leading payment service company. This dataset (denoted

5https://www.kaggle.com/c/ieee-fraud-detection/overview
6https://www.vesta.io/

TABLE IV
SUMMARY OF TWO DATASETS

as Vesta dataset) comprises a wide range of features from device
type to product features of real-world e-commerce transactions.
It is widely used in the research pertaining to the credit fraud
detection [63], [64]. Therefore, we select this dataset to represent
another scenario of identity theft fraud on e-commerce platforms
where fraudsters steal others’ credit cards to pay for orders. To
create user accounts, we extract the unique user ID from each
transaction record based on the bankcard, address, days related
features. The transaction behavior sequences of users are sorted
based on the account. If an account has one or more transaction
records labeled as fraudulent, the account will be labeled as a
fraudulent account (marked as 1). The account with all normal
transactions will be labeled as a normal account (marked as 0).
We combine all bankcard features in each transaction record to
represent the verified personal ID and we consider the network
information and device information as the entities of access
environments. Similarly, we construct a heterogeneous graph
linking accounts and other entities within the access environ-
ment. Additionally, we create a homogeneous graph for the
verified accounts that share the same personal ID. The statistics
of the graphs on the above two datasets are illustrated in Table IV.

In our experiments, we divided each dataset into three parts:
training set, validation set, and test set. The split was done
randomly with a ratio of 3:1:1. During training, we utilized all
the accounts in the training set and computed the cross-entropy
loss based solely on the predicted results of the labeled accounts.

2) Baselines: Given the absence of existing methods for
financial identity fraud detection, we conducted a comparative
analysis of EnvIT against various representative methods. These
methods are selected based on their suitability for fraud detection
and can be categorized into three groups:
� Sequence-based methods: LSTM [61], Bi-LSTM [65],

GRU [66], HATnt-LSTM [12], and TSF [41]. LSTM,
Bi-LSTM, and GRU are well-established recurrent neu-
ral networks that are commonly employed for modeling
fraudulent behavior sequences [67]. HATnt-LSTM is an
approach for fraud detection that focuses on sequential be-
havior representations. It excels at capturing the temporal
dynamics of fraudulent activities, incorporating the interval
time between consecutive time steps. To generate behavior
embeddings from the historical behavior of accounts, we
employ HATnt-LSTM. Then, these behavior embeddings
are fed into the final detection layer for identification of
fraudulent accounts. TSF examines the issue of detecting
compromised accounts caused by phone number reassign-
ments. It incorporates a temporal pattern encoder and a
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statistical feature encoder to capture behavioral evolution
and significant operational features.

� Homogeneous GNNs: GraphSAGE [59] and GAT [58].
Both of these graph neural networks are commonly adopted
for graph fraud detection. We streamline the classification
task by transforming the heterogeneous environment graph
into homogeneous environment graphs. Subsequently, we
learn the embeddings of account nodes in each environment
graph, as well as the account graph. Finally, we concate-
nate the embeddings of each graph together for the final
detection.

� Heterogeneous GNNs: R-GCN [68], HAN [69],
HACUD [24], SOBT [5], and SEC-GFD [54]. R-GCN is
a specialized graph neural network designed for modeling
complex relations among nodes in heterogeneous
graphs. HAN considers meta-paths from neighbors
and employs node-level and semantic-level attentions to
learn informative node embeddings. Both R-GCN and
HAN are suitable for identifying the fraud nodes. In
the context of financial services, HACUD emerges as
a cash-out fraud detection model that considers diverse
attributes and relations among various entities based
on users’ preferences. We leverage them to model the
account embeddings for the final detection. SOBT is
a credit card fraud detection model that uses a fraud
feature-boosting mechanism. It incorporates a spiral
oversampling balancing technique to balance the ratio
of legitimate to fraudulent transactions and improve the
model’s discrimination capability. SEC-GFD designs
a Spectrum-Enhanced and Environment-Constrainted
Graph Fraud Detector (SEC-GFD) to comprehensively
incorporate spectrum and label information into a fraud
detector.

Furthermore, we compare EnvIT with two of its variants,
namely EnvIT-Graph and EnvIT-Beh. The former exclusively
integrates environmental difference and environmental aggre-
gation as inputs to the final detection layer. The latter relies
solely on behavioral features to generate behavioral embed-
dings, which are subsequently utilized in the final detection
layer.

3) Metrics: We use the Area Under Curve (AUC) [70] met-
ric to evaluate the detection performance. This metric rep-
resents the area under the receiver operating characteristic
(ROC) curve, assessing the pairwise ranking performance of the
classification results between positive and negative instances.
The AUC is a crucial metric in fraud detection, particularly
in imbalanced classification scenarios. To prevent normal ac-
counts from being misclassified as fraudulent, we strive to
achieve high precision in practice. However, it is equally im-
portant to identify as many fraudulent accounts as possible,
thus achieving a high recall. Following previous studies [71],
[72], we employ Recall@T%Precision as another metric. This
metric is defined as the recall value obtained when the model
achieves a precision score of T%. To compare the detection
performance of all models, we set T to be 80, 85, and 90,
respectively.

4) Implementation Details: All models are based on Py-
Torch [73] and Deep Graph Library (DGL) [74]. For a fair

comparison, the learning rate, batch size, and embedding size
are set to 1× 10−3, 256, and 32, respectively, to maintain
consistency across all models. Adam is chosen as the optimizer.
For sequence-based methods and the behavior feature extractor
in EnvIT, we set the number of time steps to 40. Furthermore,
we employ 2 propagation layers for all GNNs. Particularly,
GraphSAGE, EnvIT-Graph, and EnvIT adopt a “mean-pooling”
aggregation strategy. We sample a maximum of 100 neighbors.
Additionally, the GAT, HAN, EnvIT-Graph, and EnvIT incorpo-
rate 8 attention heads. For the Meituan dataset, we leverage three
meta-paths based on IP address, device, and delivery address for
HAN, HACUD, EnvIT-Graph, and EnvIT. On the Vesta dataset,
we select two meta-paths based on the network information and
device for HAN, HACUD, EnvIT-Graph, and EnvIT.

When training EnvIT and other baseline models to evaluate
the overall performance, there is some randomness in the experi-
ments (e.g., the partition of the dataset and the training process of
each neural network). Therefore, we use a set of random seeds to
control the randomness. They are generated by numpy.random,
a Python-based random number routine. We run 5 rounds to
train all models with the same set of random seeds, and the
results are averaged. Additionally, the early stopping mechanism
is employed to avoid over-fitting. The training process will stop
if the AUC value in the validation set does not increase for 15
epochs.

B. Performance Evaluation

1) Overall Performance: Based on the experimental results
(see Table V), a number of conclusions can be drawn: (1) The
inclusion of time intervals allows EnvIT-Beh to outperform all
sequence-based methods except for TSF, showcasing its supe-
rior performance by considering the varying time intervals. (2)
Incorporating the connections among verified accounts sharing
the same personal ID (i.e., the account graph) enhances the
performance of most GNNs. (3) EnvIT-Graph outperforms other
GNNs, particularly in terms of Recall@T%Precision. Among
verified accounts sharing the same personal ID, this finding
supports the presence of environmental differences. (4) On
Meituan dataset, GAT surpasses GraphSAGE and R-GCN. This
can be attributed to GAT’s attention mechanism, which effec-
tively aggregates information from different neighbors while
considering their relative importance. However, the performance
of GAT is worse than that of GraphSAGE and R-GCN on Vesta
dataset. This is mainly attributed to the fact that the importance
of different neighbor nodes has little significance, because the
average degree of the account nodes in Vesta dataset is so small.
(5) HAN goes beyond accounting for the importance of different
neighbors and incorporates the importance of different meta-
paths. This enables HAN to outperform GAT on both datasets.
(6) HACUD demonstrates an inferior performance on both
datasets, demonstrating the distinction between the cash-out and
the financial identity theft as different types of financial fraud. (7)
SOBT outperforms many sequence-based models and several
baselines on both datasets, likely due to its advanced feature
selection and oversampling techniques. Similarly, SEC-GFD
performs better than most graph-based models, which could be
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TABLE V
PERFORMANCE COMPARISON OF ENVIT AND BASELINES. THE W/O ID

INDICATES THE MODEL EXCLUSIVELY LEVERAGING THE HETEROGENEOUS

ENVIRONMENT GRAPH WITHOUT THE ACCOUNT GRAPH, R@T%P IS SHORT

FOR RECALL@T%PRECISION. THE BEST IS BOLD.

due to its incorporation of spectrum and label information for
fraud detection.

Furthermore, EnvIT-Graph surpasses EnvIT-Beh, emphasiz-
ing the greater importance of the associations across environ-
mental entities over the historical activities. Nonetheless, neither
approach outperforms EnvIT. This highlights the importance
of simultaneously incorporating both the associations across
environmental entities and historical activity sequences into the
detection model. We examine the significance of performances
of models with Welch’s t-test [75] to strengthen the experimental
validity. We calculate the corresponding p-values to investigate
the difference between the performance of our model and the
baselines. By performing Welch’s t-test, we find that the value
of p is less than 0.05. This verifies the significance of the detec-
tion results in distinguishing fraudulent accounts from normal
accounts.

Taking the Meituan dataset as an example, the Precision-
Recall curve and the ROC curve of EnvIT and baselines are
displayed in Fig. 3. The results clearly demonstrate that EnvIT
consistently exhibits a superior performance in terms of both
precision and recall values. This underscores the effectiveness
of EnvIT in fraud detection.

Fig. 3. Precision-Recall and ROC curves of models on Meituan dataset.

TABLE VI
ABLATION STUDY OF ENVIT (R@T%P IS SHORT FOR RECALL@T%PRECISION)

We attribute this superior performance to EnvIT’s unique
design, which jointly models heterogeneous environmental as-
sociations and historical activity sequences. In contrast, existing
state-of-the-art models typically focus on one aspect (e.g., only
temporal modeling or only graph structure) and fail to capture
the intricate dynamics between users and their surrounding
environment. These results confirm that the combination of
complex social relationships and temporal information within
a unified architecture leads to a more expressive and effective
fraud detection model.

2) Ablation Study: To gain insights into the impact of dif-
ferent components on detection performance, we performed an
ablation study. Table VI presents the results for four variants of
EnvIT.
� EnvIT (w/o Env_agg): EnvIT removes the environmental

aggregation extractor;
� EnvIT (w/o Env_diff): EnvIT eliminates the environmental

difference extractor;
� EnvIT (w/o Beh.): EnvIT removes the behavior feature

extractor, i.e., EnvIT-Graph;
� EnvIT (w/o Attn.): EnvIT replaces the attentive feature

fusion module by employing an averaging manner to fuse
different features.

According to Table VI, we observe that the importance of
different modules varies across the two datasets. The environ-
mental aggregation extractor contributes the most to the Meituan
dataset, while the environmental difference extractor contributes
the most to the Vesta dataset. This discrepancy may be due to
the different fraud behaviors in the two datasets. In the Meituan
dataset, fraudulent accounts tend to form clusters through shared
environmental entities, making the aggregation patterns more in-
formative. In contrast, the Vesta dataset contains more dispersed
and heterogeneous fraud activities, where frequent changes in
environments are used to evade detection. The complementary
nature of the two modules enhances the robustness of the model
against various fraud strategies. For both datasets, historical
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Fig. 4. Experimental results of different hyper-parameters. (a)-(d) are different hyper-parameter settings for learning rates, batch sizes, embedding sizes, and
time steps, respectively.

TABLE VII
EFFECTS OF DIFFERENT ENVIRONMENTAL SUBGRAPHS

TABLE VIII
EFFECTS OF DIFFERENT ENVIRONMENTAL METAPATHS

behavior is the least important. Notably, the performance of
EnvIT (w/o Attn.) is inferior to EnvIT, which suggests the need
for a well-designed fusion approach for the three representations.
This observation confirms the effectiveness of the attentive
module we have incorporated.

3) Evaluation on Different Environmental Features: By
varying the type of sub-graphs and meta-paths for evaluation,
we can observe the impact of environment-related sub-graphs
and meta-paths on the overall model’s detection performance.

The performance results of EnvIT without different sub-
graphs of environmental differences are shown in Table VII.
“w/o ip_subgraph” (M1), “w/o device_subgraph” (M2), “w/o
address_subgraph” (M3), and “w/o network_subgraph” (M4)
represent deleting the account-IP address sub-graph, account-
device sub-graph, account-delivery address sub-graph, and
account-network sub-graph on the basis of the original model,
respectively. According to the results, EnvIT’s prediction perfor-
mance drops the most for the Meituan dataset when the environ-
mental difference feature of the delivery address is excluded.
For the Vesta dataset, the environmental difference feature of
network information used by verified accounts with the same
personal ID is more significant than the differences between
devices.

The performance results of EnvIT without different features
for environmental aggregation are shown in Table VIII . Specifi-
cally, “w/o ip_meta-path” (M5), “w/o device_meta-path” (M6),
“w/o address_meta-path” (M7), and “w/o network_meta-path”

(M8) indicate that EnvIT does not consider meta-paths based
on IP address, device, delivery address, and network informa-
tion, respectively. In the Meituan dataset, removing the device
meta-path (M6) decreases AUC from 0.9031 to 0.8691 (↓ 3.4%),
R@80%P from 0.4619 to 0.3966 (↓ 6.53%), R@85%P from
0.4171 to 0.2827 (↓ 13.44%), and R@95%P from 0.3672 to
0.2110 (↓ 15.62%). One could observe that the device aggrega-
tion is the most important feature. For the Vesta dataset, remov-
ing the network meta-path (M8) lowers AUC from 0.9187 to
0.9036 (↓ 1.51%), R@80%P from 0.6172 to 0.5557 (↓ 6.15%),
R@85%P from 0.5648 to 0.4885 (↓ 7.63%), and R@95%P from
0.4782 to 0.3908 (↓ 8.74%), indicating that network information
has the greatest impact. We also observe that different metrics
respond differently. Specifically, AUC is relatively stable across
different meta-path settings, reflecting the overall classification
capability of models, while R@T%P metrics are more sen-
sitive because they emphasize high values of the precision,
where missing key environmental information could reduce
the value of the recall. This highlights the importance of spe-
cific environmental relationships under strict constraints of the
precision.

4) Hyper-Parameter Study: We choose a set of values to train
the model for each hyper-parameter. We select the value where
the AUC achieves the highest on the validation set. Specifically,
we tune the learning rate, batch size, embedding size, and num-
ber of time steps in [1× 10−1, 5× 10−2, 1× 10−2, 5× 10−3,
1× 10−3, 5× 10−4, 1× 10−4], [128, 256, 512, 1024], [16, 32,
64, 128], and [10, 20, 30, 40, 50], respectively. We present the
detection results of EnvIT (AUC metric) with different learning
rates and batch sizes in Fig. 4(a) and (b), respectively. Fig. 4(c)
shows the results of EnvIT with embedding sizes of hidden states
in the environmental difference extractor and the environmental
aggregation extractor. Similarly, the results of EnvIT with differ-
ent time steps of the behavior feature extractor are presented in
Fig. 4(d).

According to Fig. 4(a), the change in learning rate has a great
impact on EnvIT’s detection performance. As the learning rate
decreases, the AUC obtained by EnvIT first increases and then
decreases. The best result is achieved when the learning rate
is 1× 10−3, indicating that choosing 1× 10−3 is better than
choosing other values. From Fig. 4(b), we observe that EnvIT
performs the best on AUC when the batch size is 256. One can
see that different embedding sizes have little influence on the
experimental results in Fig. 4(c). Under different embedding
sizes, the AUC of EnvIT can reach more than 0.90. Choosing
an embedding size of 64 is optimal in our experimental settings.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on February 13,2026 at 14:10:52 UTC from IEEE Xplore.  Restrictions apply. 



5598 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 13, 2026

Fig. 5. Averaged attention weights over meta-paths for fraudulent accounts
on two datasets: (a) Meituan and (b) Vesta. In the Meituan dataset, the A-D-A
meta-path receives the highest attention weight, while the A–I–A meta-path
plays a significant role in the Vesta dataset.

Generally, the longer the behavior sequence, the more infor-
mation the behavior feature extractor can learn. However, each
account has a different length of the behavior sequence. We
use the zero-padding technique when the sequence length of an
account is less than the number of time steps. Therefore, it is not
appropriate to choose a very long sequence, which will result
in too many zeros in the input of the behavior feature extractor.
Fig. 4(d) shows that 40 is the optimal value of the number of
time steps that achieves an AUC greater than 0.90.

C. Visualization of Attention Weights Based on Meta-Paths

To better understand how our model leverages the envi-
ronmental structure for financial identity theft detection, we
visualize the averaged attention weights across meta-paths
on two datasets: account-device-account (A-D-A), account-IP
(Network)-account (A-I-A), and account-location-account (A-
L-A) in Fig. 5. The Meituan dataset shows that the meta-path
A-D-A carries the highest significance with a weight of 0.8048,
as displayed in Fig. 5(a). In contrast, the meta-paths A-I-A
and A-L-A have little impact (0.1493 and 0.0459, respectively).
However, for the Vesta dataset, the A–I–A meta-path receives
the highest weight (0.9698), while the A–D–A meta-path con-
tributes minimally (0.0302), as shown in Fig. 5(b). Such varied
weighting across datasets indicates that our model emphasizes
different interactions, which indicates suspicious behavior for
different platforms. By assigning higher weights to semantically
informative paths, the model effectively captures structural sig-
nals relevant to fraud detection. Therefore, the attention mech-
anism used in EnvIT not only reveals the global importance
of meta-paths but also provides case-level interpretability. For
each account, the attention weights highlight which environ-
mental relations (e.g., device, IP, or address) and behavioral
patterns (e.g., login sequences) contributed most to the predic-
tion. These insights can guide fraud analysts in focusing on key
features and interactions, providing a foundation for further
investigation.

VI. LIMITATIONS AND DISCUSSION

In this section, we listed some limitations of our method and
discussed some key issues.

A. Limitations

The above experimental results demonstrate EnvIT’s superior
performance in the detection of identity theft fraud accounts.
However, there are some limitations of this work. We will discuss
them and provide a vision for future work.
� First, EnvIT assumes that the historical behaviors (i.e.,

login and payment records) of the account exists when
detecting whether an account is fraudulent. This premise
allows us to extract the devices, IP addresses and other
entities within the access environment used by the account
from the historical behaviors. However, some fraudulent
accounts do exhibit few activities. They are isolated nodes
in the heterogeneous environment graph. Also, most of the
time steps of their behavior sequence would be padded
by zero vectors. Therefore, it is difficult to learn the fraud
patterns of these accounts. To overcome this limitation,
we will employ the “cross-site linking” function [76],
[77] to import social relationships from other websites.
Since the accounts used by the same user on different
online websites can be linked by the “cross-site linking”
function, it is possible to use the social relationships on
other websites to address the problem of the sparsity of
accounts’ relationships on O2O e-commerce platforms.

� Additionally, EnvIT incorporates unlabeled accounts
through message passing in the heterogeneous graph, en-
abling structural and behavioral information from labeled
accounts to propagate to unlabeled nodes. Although we
have adopted a semi-supervised learning approach for
model training, we recognize that some advanced fraud-
ulent accounts may not have been identified. Since un-
labeled accounts only participate in the message passing
process, but do not generate supervised signals, there is a
risk of model learning bias. Therefore, future work might
consider investigating the background nodes [78], [79]
to advance our method and introducing methods such as
pseudo-labeling [80], [81] or contrastive learning [82], [83]
to better adapt to such scenarios. Pseudo-labeling could
serve to expand the effective labeled accounts, and con-
trastive learning might aid in distinguishing subtle differ-
ences between fraudulent and normal activities. Employing
these strategies could alleviate label bias and enhance the
detection of silent or undetected fraud. Moreover, we only
adopt under-sampling to deal with the class imbalance
problem of identity theft fraud. Under-sampling is applied
effectively in feature-based methods. While in graph-based
methods, under-sampling may remove important structural
relationships of the graph, thus limiting the model’s ability
to generalize in real online deployment. The study of the
class imbalance problem on graphs is promising [56],
[84]. In the future, we also plan to design other samplers
to solve the class imbalance problem of identity theft
fraud.

� Finally, EnvIT’s performance on identity theft detection
has demonstrated its superiority of capturing fraud pat-
terns from access environment and behavior sequences.
As we all know, many factors lead to identity theft fraud,
including phishing attacks [85], malware software, social
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media fraud [86], and loss of items. Further differentiation
among the different types is a valuable direction. In the
future, we aim to assign finer-grained labels to each account
based on user feedback. We plan to extend our approach
to distinguish finer-grained types that cause identity theft
fraud.

B. Practical Deployment Challenges

We discussed some practical challenges in deploying EnvIT in
real-world fraud detection systems. First, low-latency inference
is crucial in high-traffic environments, which requires further
optimization of our model to meet real-time demands. Second,
fraud patterns evolve rapidly in practice, so the model must
adapt over time to remain effective. Lastly, interpretability is
vital for compliance and trust, especially in financial domains
where decisions must be explainable. In future work, we plan to
develop visualization tools to make these case-level explanations
more accessible and actionable for analysts.

C. Model Robustness

Although EnvIT demonstrates strong performance on both
benchmark datasets and in real-world deployment, it currently
does not explicitly address adversarial evasion tactics such as
synthetic identity creation or device/VPN spoofing. However,
fine-grained behavior modeling and graph aggregation may im-
plicitly capture inconsistencies associated with such behaviors.
To further enhance robustness against evolving fraud strategies,
future work will explore techniques such as adversarial behavior
simulation, and self-supervised pre-training on evolving user
activity to better adapt to real-time data drift and adversarial
attacks.

VII. CONCLUSION

This paper investigates the problem of detecting financial
identity theft in O2O e-commerce services. We analyze real-
world cases from Meituan. Our findings reveal some key fraud
patterns at different levels, such as associations across environ-
mental entities and behavioral activities exhibited by accounts.
Based on these important discoveries, we introduce EnvIT, a
deep learning-based framework to detect financial identity theft
fraud by considering both the environmental association factors
and the historical activities of accounts. The effectiveness of
EnvIT and the interpretability of the detection results are demon-
strated by experimental results on two datasets from Meituan
and Vesta. We empirically show that factors from the associated
access environment and temporal behavior activities are critical
for the detection of financial identity theft fraud.
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