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Higher-order relationships exist widely across different disciplines. In the realm of real-world
systems, significant interactions involving multiple entities are common. The traditional
pairwise modeling approach leads to the loss of important higher-order structures, while
hypergraph is one of the most typical representations of higher-order relationships. To deeply
explore the higher-order relationships, researchers and practitioners use hypergraph analysis
to model the higher-order relationships and describe the important topological features in
higher-order networks. At the same time, they carry out hypergraph learning studies to learn
better node representations by designing hypergraph neural network models. However,
existing hypergraph libraries still have the following research gaps. The first is that most of
them are not able to support both hypergraph analysis and hypergraph learning, which
negatively impacts the user experience. The second is that the existing libraries exhibit
insufficient computational performance, which causes researchers and practitioners to spend
more time and incur expensive resource costs. To fill these research gaps, we present
EasyHypergraph, a comprehensive, computationally efficient, and storage-saving hypergraph
computational library. To ensure comprehensiveness, EasyHypergraph designs data struc-
tures to support both hypergraph analysis and hypergraph learning. To ensure fast compu-
tation and efficient memory utilization, EasyHypergraph designs the computational workflow
and demonstrates its effectiveness. Through experiments on five typical hypergraph datasets,
EasyHypergraph saves at most 8470 s and 935 s over two baseline libraries in terms of
analyzing node distance on a dataset with more than one hundred thousand nodes. For
hypergraph learning, EasyHypergraph reduces HGNN training time by approximately 70.37%
in a similar scenario. Finally, by conducting case studies for hypergraph analysis and learning,
EasyHypergraph exhibits its usefulness in social science research.
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Introduction

ypergraph is a generalization of simple networks in which

a hyperedge can connect any number of nodes (Agarwal

et al. 2006; Feng et al. 2019), and also a critical metho-
dology for research in complex systems (Fic and Gokhale, 2024;
Lerman et al. 2024; Wang et al. 2024). In contrast to simple net-
works that only model pairwise relationships, hypergraphs can
represent more complex relationships among entities, thereby
avoiding the loss of higher-order information (Varley, 2024; Wang
and Kleinberg, 2024). It enables a more precise representation of
real-world systems and enhances network-based analysis, thereby
advancing data mining and knowledge discovery in the fields of
sociology (Fic and Gokhale, 2024; Rodriguez-Casail et al. 2024;
Schwartz, 2021), development studies (Kim et al. 2024a), eco-
nomics (Li et al. 2024a; Xi et al. 2024), and education (Cheng et al.
2024; Landaeta-Torres et al. 2024). Specifically, in the academic
collaboration scenario between more than two researchers
(Newman, 2001), hypergraphs offer more precise representations
that help us deduce both collaborative links among authors and
the specific papers they have published together. However, with a
simple network, we can only represent a collaboration between two
authors, and might even incorrectly project the original higher-
order relationship to a pairwise link.

Therefore, more researchers and practitioners explore the
potential of higher-order structure using hypergraphs, and pro-
pose a number of theoretical studies (Lung et al. 2018; Ramadan
et al. 2004). This paper concerns two research areas in the field of
hypergraphs. Here, we refer to the quantization and character-
ization of hypergraph structures at multiple scales as hypergraph
analysis and node representation learning through hypergraph
neural networks (HNNs) as hypergraph learning. Hypergraph
analysis enables researchers and practitioners to explore the
patterns of target networks, which prompted the emergence of
research topics such as node ranking, hyperedge ranking, and
hypergraph connectivity. Hypergraph learning exhibits a superior
capability to capture the higher-order relationships and increase
the precision of downstream tasks in target networks by designing
specific learning components (Feng et al. 2019; Gao et al. 2022a).

However, existing theoretical studies are implemented in various
forms and dispersed across different platforms, which increases the
difficulty and cost for researchers and practitioners to carry out
related studies. To address the above problems, several hypergraph
computation libraries are presented, which are shown in Table 1.
Functionally, most existing libraries support hypergraph analysis
and structure visualization, while only one library focuses on
hypergraph learning. In terms of development, some libraries
partially depend on a graph library called NetworkX (Hagberg et al.
2008) for metrics computation, which might be limited by the
performance of NetworkX and constrain their scalability. Besides,
several libraries are in a state of discontinued development.

Although existing hypergraph computation libraries partially
meet the needs of multidisciplinary researchers and practitioners,
several critical issues remain unresolved. The primary limitation
lies in their data structure design, which lacks a unified framework

for hypergraph computation. This architectural constraint prevents
researchers and practitioners from conducting hypergraph analysis
and learning tasks conveniently. As shown in Table 1, existing
libraries are limited to providing only a restricted range of metrics
or concentrating solely on implementing HNNs. These issues drive
researchers and practitioners to shift between libraries and lead to a
time-consuming process. Secondly, existing libraries face chal-
lenges with increased time and memory consumption when
handling large-scale datasets. This inefficiency might stem from
their external dependencies, sub-optimized metric implementa-
tions, and ineffective handling of higher-order relationships.

To fill the research gap of existing hypergraph libraries, the first
goal of EasyHypergraph is to design a unified hypergraph com-
putation framework that supports both hypergraph analysis and
hypergraph learning. Then, we should extend this framework to
provide researchers and practitioners with two key capabilities: 1)
rich hypergraph analysis functions and hypergraph learning
models, and 2) high-performance computing for large-scale data
scenarios by efficiently utilizing computational resources. Based
on the research goals, we summarize the contributions of this
paper as follows:

1. We design and build EasyHypergraph, a comprehensive
software library that unifies hypergraph analysis and learning.
Our design enables hypergraph analysis and hypergraph
learning to be implemented within a unified framework,
which helps users deal with different hypergraph-relevant
functions efficiently without relying on external libraries.

2. EasyHypergraph incorporates efficient computational
workflows to enable optimization of hypergraph analysis
and learning, achieving superior computation speed and
memory efficiency in processing large-scale data compared
with existing libraries. The computational workflow firstly
divides hypergraph properties into basic and advanced
properties. Then, EasyHypergraph achieves a computation
acceleration by designing loop fusion, preloading, and
caching mechanisms to optimize both types of properties.
Furthermore, EasyHypergraph is built with a sparse storage
format selection strategy for memory efficiency by char-
acterizing the hypergraph incidence matrix. Experiments
for hypergraph analysis demonstrate significant perfor-
mance improvements. The average speedup ratio on all
compared metrics calculations could reach 11,155. In
scenarios with tens of thousands of nodes, EasyHypergraph
reduces memory usage by up to 54.28% and 44.17% for the
incidence matrix compared with HNX and XGI, respec-
tively. Meanwhile, our learning model implementation can
achieve a faster training speed than DHG. Specifically, our
implementation of the HGNN model achieves up to a
70.37% reduction in training time compared with DHG
when the data size exceeds hundreds of thousands.

3. EasyHypergraph demonstrates its availability and flexibility
in hypergraph analysis and hypergraph learning by serving

Table 1 Comparison between traditional hypergraph computation libraries.

Library Hypergraph analysis  Hypergraph learning  Structure visualization = NetworkX dependency  Continuous development
XGl v - v v v
HNX v - v v v
HGX v - v v v
Reticula v - - - v
Halp v - - - -
DHG - v v - v
EasyHypergraph v v v - v
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two case studies. For hypergraph analysis, EasyHypergraph
is able to characterize the structural properties through a
suite of hypergraph metrics and algorithms for two
congressional committee datasets. Besides, EasyHypergraph
exhibits its potential in multi-class node classification tasks.
By utilizing two widely adopted co-citation datasets to
classify scientific publications into distinct categories,
HNNs implemented by EasyHypergraph outperform tradi-
tional graph convolutional networks in prediction accuracy,
precision, and recall.

Literature review

The concept of hypergraph and relevant libraries. Hypergraph
is an extended form of a simple graph, first proposed by Berge
(Berge, 1985) in 1973. In a hypergraph, hyperedges can connect
any number of nodes, enabling more flexible modeling of rela-
tionships among nodes. This flexibility allows hypergraphs to
better represent complex relationships among multiple nodes,
such as higher-order interactions. Given a hypergraph H, its node
set is denoted as V = {v},v,,...,vy}, and its hyperedge set is
denoted as E = {e,,e,,...,ey }, and the definitions can be for-
malized as follows:

H = (V,E) (1)

However, modeling hypergraphs faces the challenge of how to
represent nodes and hyperedges. The original idea is to project
(Yadati et al. 2019; Yan et al. 2024; Yang et al. 2022) the
hypergraph into a simple graph and then analyze it by a graph
analysis library such as EasyGraph (Gao et al. 2023). EasyGraph is
one of the representative multifunctional and effective Python
libraries for interdisciplinary graph analysis. Although EasyGraph
can facilitate the analysis of projected hypergraphs, existing
studies (Wang and Kleinberg, 2024) have also found that the
current hypergraph projection algorithms might cause higher-
order information loss. Therefore, researchers have to make
trade-offs on whether or not to perform a hypergraph projection
based on the target scenario. In summary, it is necessary to
develop a hypergraph computation library with flexibility in
modeling hypergraphs in the form of pair-wise or higher-order
structures. Currently, several end-to-end hypergraph computa-
tion libraries have been developed, which are listed below:

e HNX (HyperNetX) (Laboratory, 2023) is a Python-based
hypergraph library that covers a wide range of algorithms
and metrics for hypergraph analysis, such as centrality
measures (Estrada and Rodriguez-Veldzquez, 2006a),
identification of motifs (Lotito et al. 2022).

e XGI (CompleX Group Interactions) (Landry et al. 2023) is a
hypergraph library that is implemented in Python, which
partly depends on NetworkX. It contains a comprehensive
hypergraph analysis pipeline, including algorithms for hyper-
graph structure analysis and dynamic hypergraph simulation.

e DHG (DeepHypergraph) (Dai and Gao, 2023) is a
representative hypergraph deep learning library, and it is
inherited and extended from the THU-HyperG (Gao et al.
2022b). DHG can not only implement the basic structure of
hypergraph for hypergraph learning, but also provide many
basic operations during the learning process. Besides, the
library contains modules for loading hypergraph datasets,
visualizing hypergraphs, and metrics for evaluation.

In addition to the aforementioned hypergraph computation
libraries in the community, several other open-source hypergraph
libraries are noteworthy. For instance, HGX (Hypergraphx)
(Lotito et al. 2023) is a versatile hypergraph analysis library that

offers a comprehensive suite of hypergraph analysis metrics and
algorithms, including centrality measures (Estrada and Rodri-
guez-Velazquez, 2006b), motif identification (Lotito et al. 2022),
and community detection (Tudisco and Higham, 2023). Another
notable library, Reticula (Badie-Modiri and Kiveld, 2023),
specializes in the analysis of temporal hypergraphs-those
incorporating time-dependent attributes. It provides methods
for understanding temporal correlations within hypergraphs,
offering unique insights into dynamic higher-order interactions.
Most of these tools enable users to conduct in-depth analysis of
hypergraphs, uncovering their structural features and patterns.

A review of hypergraph analysis. Hypergraph analysis could
quantitatively characterize the higher-order networks based on
the hypergraph structure. It usually derives from the following
properties. The structural representation of the hypergraph can
be described by the incidence matrix H, which is defined as

H(Viv e]) = {

Lv,eg @)
0, else.

The connectivity of the nodes in the hypergraph can be calculated
based on the hypergraph adjacency matrix, where the definition
of the adjacency matrix A is described as

A=HHT. (3)

In addition, hyperdegree and hyperedge degree are also
important properties in hypergraph analysis, which can describe
the connectivity of nodes/hyperedges. Their definitions are

D(v) = §E Wie) - H(v,e), (4)
and the hyperedge degree is defined as
D(e)= X H'(e,). (5)
veV

where W(e) represents the weight of each hyperedge, which
defaults to 1 if not specified. To achieve hypergraph analysis, a
range of theoretical studies is proposed, which are
introduced below.

Node ranking and hyperedge ranking. Node ranking quantifies the
importance of nodes in the hypergraph, and different metrics
quantify node importance from different perspectives. Apart from
hyperdegree, there are also other important metrics. Kovalenko
et al. (2022) proposed vector centrality, which quantifies the
importance of nodes by first constructing a line graph where
nodes correspond to hyperedges in the original hypergraph. They
first calculated the eigenvector centrality (Ruhnau, 2000) of nodes
in the line graph. Then, they defined the vector centrality for each
node in the hypergraph based on the centrality of the hyperedges
it belongs to. Mancastroppa et al. (2023) proposed hypercoreness
to describe the role of a node in the dissemination and reception
of information within a network. Its idea is to perform k-core
decomposition on the hypergraph to obtain the maximum
number of layers, so as to calculate the proximity of each node to
the hypergraph core. Nodes with higher core values play a more
important role in the network. Additionally, Fan et al. (2021)
introduced a metric called cycle ratio. This metric involves cal-
culating the number of shortest cycle structures. The greater the
number of cycle structures a node is part of, the more influential
it is within the network.

Apart from node ranking, hyperedge ranking evaluates the
importance of hyperedges. Vasilyeva et al. (2023) proposed
s-closeness centrality. This metric reflects the role of each
hyperedge in the network by calculating the shortest path
between a hyperedge and all other hyperedges. Besides, Lee
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et al. (2021) extended the betweenness centrality in simple graphs
to hypergraphs by projecting a hypergraph to a line graph.

Connectivity. Researchers also studied the connectivity of the
hypergraph by calculating the connected components. From the
perspective of global structure, Dewar et al. (2018) ported the
concept of connected components on simple graphs to hyper-
graphs. The connected components in hypergraphs are essentially
maximal connected weak sub-hypergraphs. Besides, the distance
(Vasilyeva et al. 2023) between nodes within the hypergraph is
used to indicate inter-node reachability. From the perspective of
local structure, Gallagher and Goldberg (2013) measured the
clustering coefficient of node neighborhoods by considering
independent and dependent connections between node neigh-
bors, as well as the overlap of adjacent hyperedges.

Null model. Null models generate random hypergraphs with
specific properties, serving as benchmarks for statistical sig-
nificance testing. The simplest random hypergraph null model is
similar to the pair-wise network generation algorithm proposed by
Erdos et al. (1960). One needs to specify the number of nodes, the
number of hyperedges, and the probability of hyperedge genera-
tion. Then, this null model will generate a uniform hypergraph
with the same hyperdegree for all nodes. Besides, Aksoy et al.
(2017) proposed a Chung-Lu random model to generate random
hypergraphs that satisfy a specified degree distribution. Kook et al.
(2020) proposed a hypergraph null model that can reproduce five
structural patterns from previous studies using only two para-
meters. Juul et al. (2024) introduced m-patterns, which are simple
hypergraphs with m nodes, and they employed the hypergraph
null model to understand the prevalence of m-patterns to for-
malize relationships between collaborators.

Applications. Various researchers apply hypergraph analysis to
fulfill their studies. For example, hypergraph analysis can help
researchers better understand how different social network
structures influence group synchronization and decision-making
behaviors through higher-order interactions, providing a crucial
research perspective for uncovering the collective dynamics of
complex systems (Chen et al. 2025; Lucas et al. 2020; Zhang et al.
2021). Besides, hypergraph analyses are also adopted to identify
critical and evolving patterns of residents’ post-disaster needs
over time (Zhao et al. 2024). At the same time, hypergraphs are
capable of transforming building geometries into computable
graphical structures for solving problems related to space utili-
zation and carbon emissions in the field of architecture (Weber
et al. 2024). In the field of cybersecurity (Jia et al. 2025), hyper-
graphs can readily integrate strategies and techniques for cyber
attack analysis directly into the network structure, which enables
researchers to increase the compactness of modeling (Guzzo et al.
2017) and extract diverse relationships among security entities
more efficiently.

A review of hypergraph learning. There is a wide range of
higher-order relationships in real life, and it covers structural
patterns that are usually invisible in simple networks (Kim et al.
2024b). Moreover, the existing GNNs (Graph Neural Networks)
do not consider higher-order interactions. Therefore, HNNs are
proposed to solve these challenges. To achieve hypergraph
learning, users should prepare node/hyperedge features and
encode them into a high-dimensional vector representation (e.g.,
node representation). Different from the GNNs, which only pass
messages between pairwise nodes, HNNs can pass messages from
nodes to hyperedges, hyperedges to nodes, or use even more
complicated mechanisms. Finally, the node representation is

4

learned by crafting the above mechanisms after rounds of train-
ing. The node representation can be utilized to improve the
precision of node classification and hyperlink prediction. In
summary, hypergraph learning refers to representation learning
using HNNs (Kim et al. 2024b).

Existing HNNs can be broadly categorized into spectral-based
approaches (Feng et al. 2019; Yadati et al. 2019) and spatial-based
approaches (Dong et al. 2020; Gao et al. 2022a; Huang and Yang,
2021; Yan et al. 2024). The representative work spectral-based
method is HGNN (Feng et al. 2019). The basic principle of HGNN
is to extend the traditional graph Laplacian operator and graph
Fourier transform to the domain of hypergraph. Then, to achieve
the effect of node-to-edge and edge-to-node message passing and
integration, the hypergraph signals are further converted from the
spatial domain to the frequency domain. The representative
spatial-based work is HGNN™. This model defines a two-stage
convolutional paradigm that inputs the node features of the
hypergraph with the hyperedge features into the corresponding
HNN. For each round of training, two separate steps of message
passing and information integration are required. Firstly, each
node receives the messages from hyperedges corresponding to its
neighbors. Subsequently, a node integrates received messages and
updates its representation. Next, the direction of message passing
is reversed, and each hyperedge can update its representation. In
addition to the classical message-passing mechanism in the above
methods, Chien et al. (2022) proposed a new hypergraph neural
network paradigm called AllSet. The key idea of AllSet is to
dynamically learn multiset functions, transforming the existing
message-passing mechanism into a combination of two multiset
functions to achieve generalization of hypergraph learning.

Applications. Hypergraph learning has also found widespread
applications across diverse domains. In social network recom-
mendation, researchers can integrate a variety of factors such as
user ratings, user profiles, features of the recommended targets,
and contextual information into the hypergraph modeling pro-
cess. Then, the hypergraph could be used to model multi-
dimensional  higher-order  interaction  information  for
recommendation (Guo et al. 2025; Ma et al. 2022; Xia et al. 2021;
Yu et al. 2021) and improve the reliability of the recommenda-
tion. In the field of malicious detection, Xu et al. (2024) used
hypergraphs to fuse malicious triggers in textual communication,
such as sentiment context, topic context, user profile context, and
interaction context. For fake news detection, Su et al. (2025)
abstracted fake news detection as hyperedge classification and
captured the higher-order correlation between news and users
using HNNs. To address the hidden nature of trajectory inter-
actions and achieve a better trajectory prediction, Xu et al. (2022)
constructed multi-scale hypergraphs to model complex social
influences based on the correlation of action trajectories.

Methods

The goal of this paper is to present a hypergraph computation
library that seamlessly adapts to hypergraph analysis and
hypergraph learning scenarios. EasyHypergraph should primarily
provide users with a unified class for hypergraph modeling, a
comprehensive set of hypergraph analysis functions, and hyper-
graph learning models. Meanwhile, we also need to design an
efficient computational workflow to ensure that the library
achieves a superior computational performance and resource
efficiency, thereby reducing the cost and effort for multi-
disciplinary researchers and practitioners.

Unified framework for hypergraph analysis and hypergraph
learning. EasyHypergraph not only provides a unified data
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Hypergraph datasets
(static/dynamic)

Hypergraph learning

‘ Convolutional operations ‘ HNNs
Hypergraph construction Hypergraph analysis
‘ Node Hyperedge Hypergraph
Hypergraph Hypergraph ranking ranking visualization
property projection (static/dynamic)
Connectivity Null model
Node Hyperedge
operation operation

Hypergraph data and manipulation

Downstream applications

Fig. 1 General functions of EasyHypergraph. Users can load various hypergraph datasets and manipulate hypergraphs by node/hyperedge operation,
accessing properties, or projecting hypergraphs into simple graphs. Furthermore, modules in the right part are combined and augment users’ ability to

apply hypergraph analysis, learning, and visualization.

structure for hypergraph but also encapsulates a wide range of
mainstream functions for hypergraph analysis and hypergraph
learning. The general framework is described in Fig. 1, and we
follow the design logic of building before applying. Therefore, the
module on the left (building) of Fig. 1 supports the three modules
(applying) on the right. Below, we will introduce it from left to
right.

Firstly, the core functionality of EasyHypergraph is built upon
the hypergraph data and manipulations module, which is
designed to support the following submodules. 1) Hypergraph
datasets. It provides a collection of typical hypergraph datasets,
particularly those related to social networks (e.g., the datasets
listed in Table 3. 2) Hypergraph construction. Users can load
hypergraph datasets and construct hypergraphs by instantiating
the hypergraph class, which facilitates manipulations at various
levels of granularity. 3) Hypergraph manipulations. It contains
four parts in the left part of Fig. 1. They support a range of
operations, including accessing hypergraph properties, perform-
ing hypergraph projection to derive a corresponding simple
graph, and modifying the hypergraph structure through node/
hyperedge operations (e.g., add and remove).

Then, based on the constructed hypergraph class, users can
utilize the following three modules for downstream applications.

1. Hypergraph analysis module. This module contains various
features and corresponding functions, which are shown in
Table 2. EasyHypergraph covers a rich set of node ranking
algorithms (Estrada and Rodriguez-Veldzquez, 2006b; Fan
et al. 2021; Kovalenko et al. 2022; Mancastroppa et al.
2023), hyperedge ranking algorithms (Aksoy, Sinan G. et al.
2020), connectivity metrics, and hypergraph null models for
describing common hypergraph topologies (Gallagher and
Goldberg, 2013; Klimm et al. 2021; Zhou and Nakhleh,
2011).

2. Hypergraph learning module. This module consists of
HNNSs based on a series of convolutional operations. As
shown in Table 2, EasyHypergraph provides a typical
hypergraph neural network model. Users are only required
to define the input feature dimensions, hidden sizes, and
output feature dimensions. Then, they can input the
corresponding hypergraph structure during each round of
training, which can quickly build a hypergraph learning
pipeline.

3. Hpypergraph visualization module. Users are able to observe
the hypergraph topology information more intuitively
through the static visualization function that this module
offers. To meet the users’ needs to observe the evolution of
dynamic hypergraphs, EasyHypergraph enables users to

visualize dynamic hypergraphs by providing timestamp
parameters on top of the static hypergraph visualization
function. Each hypergraph structure is visualized according to
the order of timestamps. An example of dynamic hypergraph
visualization is shown in Fig. 2. Here, it should be noted that
the focus of this paper is not the design of hypergraph layout
algorithms, which will not be discussed here.

Finally, EasyHypergraph bridges the gap between EasyGraph
and higher-order relationships. EasyHypergraph is developed as
an integrated library within the EasyGraph framework, main-
taining full compatibility with its core architecture. Specifically,
one hypergraph modeled by EasyHypergraph can be projected
into a simple graph in EasyGraph by hypergraph projection
algorithms (Antelmi et al. 2023). Then, users can utilize the
algorithms associated with simple graphs in EasyGraph for
further exploration without relying on external libraries.

Computational workflow for accelerating hypergraph analysis
and hypergraph learning. Researchers and practitioners have
realized that hypergraph has the advantage of modeling
higher-order interactions in different domains (Catalyiirek et al.,
2007), which attracts more emergent research, and the scale of
hypergraph datasets available for the study could reach ten
thousand magnitudes. More importantly, it might take an unac-
ceptable time to obtain results. To address the challenges of large-
scale hypergraph datasets with limited computational resources,
we design a computationally efficient and storage-saving com-
putational workflow. The overview of our computational work-
flow is shown in Fig. 3, along with its relation to hypergraph
downstream applications.

Firstly, the computational workflow is designed based on the
hypergraph class. The hypergraph class is used to model the
hypergraph programmatically, which requires the user to input
only two parts of the necessary information, i.e., the number of
nodes contained in the hypergraph and the list of hyperedges.
The number of nodes is determined to ensure that the nodes can
be discretized into a sequence of node indices, e.g., if the number
of nodes is 5, EasyHypergraph generates a sequence of nodes [0,
1, 2, 3, 4] by default. EasyHypergraph does not initialize the nodes
provided by the user as Python objects, avoiding the node
mapping management problem introduced by Python objects and
the relatively expensive memory consumption problem. Further-
more, it shows better computation speed and memory efficiency
in processing large-scale hypergraph datasets. Secondly, this
design can make full use of the vectorization technique to
improve the computational efficiency. It not only ensures efficient
access to structural information during hypergraph analysis but
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Table 2 Function comparison of various hypergraph libraries.

Modules Features Functions

EasyHypergraph HNX XGl DHG

Hypergraph manipulation

Hypergraph analysis

Hypergraph property

Hypergraph projection

Node ranking

Hyperedge ranking

Connectivity

Null model

Incidence matrix
Adjacency matrix
Neighbor

Density

Diameter

Line graph expansion
Cligue expansion

Star expansion
Hyperdegree

Vector centrality
Hypercoreness

Cycle ratio

S-closeness centrality
S-betweenness centrality
Connected components
Distance

Cluster coefficient
K-uniform model
Chung-Lu model
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AANENE NN

1

1

HGNN
HGNN+
HNHN
HyperGCN
UniGNN
DHNE
AllDeepSet

Hypergraph learning HNNs

AllSetTransformer

I

1

1
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Layout
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Dynamic
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Fig. 2 The use case and an example of dynamic visualization. EasyHypergraph allows users to set timestamps for each hyperedge and design the layout
of figures after applying the dynamic visualization function. In the visualization, nodes with the same color represent nodes of the same type, which can be

configured by users.

also provides a more natural support for hypergraph learning
without extra data conversion. As shown in Fig. 3(a), a user could
construct a hypergraph by indicating the number of nodes and a
list of hyperedge tuples. Moreover, there are over ten integrated
hypergraph datasets for users to adopt. EasyHypergraph also
offers hypergraph save/load functions, and thus a user could save
a temporary hypergraph for future studies.

The core design of the computational workflow is depicted in
Fig. 3(b-d). In the first stage, we select one hypergraph dataset as
the initial input. In the second stage, the construction of
hyperedges occupied most of the processing time, and it could
be a time-consuming process if we need to handle a large scale of
hypergraph data. Aiming at a better computation efficiency and
fully maximizing this time, we enable the hyperdegree calculation

6

stage to be fused into the hypergraph construction. This
optimization results in a significant enhancement in computa-
tional efficiency, approximately halving the execution time from a
theoretical standpoint. Then, based on the previous stage results,
the structural information, including hyperedge ids, row offset,
and row pointers, are preloaded into memory for higher-speed
access. All of them are used for sparse matrix construction in the
following stage. In the fourth stage, all of the structural
information is organized to construct the incidence matrix. Here,
we focus on the incidence matrix because it is a crucial
representation of the hypergraph, and we regard it as a basic
property that prioritizes optimization. Then, the compressed
sparse row (CSR) is employed to store the incidence matrix,
which is a more efficient sparse format to deal with most of the
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Fig. 3 The computational workflow of EasyHypergraph. a EasyHypergraph allows users to model hypergraphs from the following formats: (i) user-defined
nodes and hyperedges, which can be saved to binary format, and recovered into the original hypergraph by the provided load function. (ii) Built-in

hypergraph datasets in EasyHypergraph. b As soon as the users input a hypergraph dataset, the first stage is to construct hyperedges in sequence, and
here the hyperdegree calculation is fused simultaneously during the loop process. € Then, the structural information is preloaded into memory for incidence
matrix construction. The dense incidence matrix is transformed to CSR sparse format for the following computational optimization. d After building up the
sparse incidence matrix, several advanced matrices can be inferred from the incidence matrix and used for hypergraph Laplacian calculation. All of them
are stored in cache memory for efficient access. e Based on the computational results, users can serve two major downstream applications, e.g., in

hypergraph analysis, the above matrix can be used for further hypergraph metrics and algorithms. In hypergraph learning, the hypergraph Laplacian matrix

is frequently used for multiplication operations.

hypergraphs and will be further explored in the following part. In
Fig. 3(d), it can be observed that the incidence matrix serves as a
critical common subexpression, facilitating the construction of
various advanced properties. Here, the hypergraph Laplacian
matrix, a mathematical representation of the hypergraph
structure for describing higher-order relationships, is composed
of these advanced properties. In addition to this, we store these
matrices in the cache storage because they might be frequently
used in the downstream tasks, and they can hardly be modified
during the computational workflow. Implementing this computa-
tional workflow can contribute to the downstream applications
shown in Fig. 3(d), such as metrics computation in hypergraph
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analysis, and Sparse Matrix-Vector Multiplication (SpMV)
(Williams et al. 2007; Yesil et al. 2023) in hypergraph learning.

Implementation of the computational workflow. A detailed and
technical implementation of the designed computational work-
flow in Fig. 3 is introduced below.

@ Categorization. We categorize properties based on their
frequency of usage. We consider properties containing structural
information reusable in hypergraph-related computations, and here
we call them basic properties. These basic properties (generally in
the form of a matrix) are low-level routines for further hypergraph-
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related computation. Then, we call properties that need further
computation based on basic properties as advanced properties. The
most common advanced properties include the transposing of the
matrix, the inverse matrix, and the generation of a new weight
matrix using existing structural information.

®@ Preloading. We preload the invariant structural information
of the basic/advanced properties. At this point, we preload the
essential structural details required for constructing the matrix,
such as column IDs, row pointers, and hyperdegree, which will be
further used in the next step. Specifically, the column IDs
represent an entry in the values and store the column index of
that element, and the row pointers array stores the index of the
first non-zero element of each row.

® Matrix construction. We construct the corresponding matrix
using the structural information preloaded in the previous step.
The format of sparse storage has a significant impact on
performance by addressing the problem of excess memory and
computational resource consumption caused by continuous zeros
in the matrix. Therefore, choosing the right sparse storage format
would be helpful for the performance optimization of hypergraph
analysis or hypergraph learning. While there are various sparse
storage methods like the coordinate format (COO), row-
compressed format (CSR), and column-compressed format
(CSC) (Paszke et al. 2019; Virtanen et al. 2020), in this work,
we focus on the COO and CSR formats. The COO format is based
on triples where only non-zero elements and their corresponding
indices are saved, whereas the CSR format includes compressed
row indices. The CSR format typically provides improved storage
efficiency and much faster calculations in contrast to the COO
format in the scenario of higher row sparsity (PyTorch, 2024;
Zhao et al. 2018). As stated in the PyTorch documentation
(PyTorch, 2024), employing the CSR format for a 10,000 x 10,000
tensor containing 100,000 non-zero 32-bit floating point values
leads to memory savings of 1.6 times compared to the usage of
the COO format. Compared with dense formats, the CSR format
can be reduced by 310 times in memory usage. Inspired by the
inherent sparsity of hypergraphs, we primarily employ the CSR
format while maintaining the flexibility to adopt the COO format
when more suitable. For specific operations like matrix element
access, we prioritize COO utilization. This format selection
enables efficient generation of advanced hypergraph properties,
including adjacency matrices, weight matrices, and hypergraph
Laplacian matrices.

@ Cache storage. The created matrix is stored in a cache for
future use. EasyHypergraph utilizes a state container to store
properties that are infrequently altered to quickly access the basic/
advanced properties mentioned above, thus avoiding unnecessary
recalculations.

The primary advantage of our computational workflow is its
full utilization of the underlying structural information of the
hypergraph. It does not rely on a specific algorithm design but
rather optimizes the underlying structure required for most
hypergraph computations. When more hypergraph metrics and

HNNS need to be implemented in the future, developers are only
required to extract the basic structural information within metrics
or HNNs and preload or cache them for possible needs or more
complicated operations. Therefore, this computational workflow
is generic across hypergraph analysis and hypergraph learning,
facilitating their comprehensive improvement.

Results

In this section, we demonstrate the effectiveness of Easy-
Hypergraph by applying a quantitative analysis. Secondly, we
conduct several experiments for hypergraph analysis and learning
on five typical hypergraph datasets to evaluate the computational
performance of EasyHypergraph. Meanwhile, the efficiency of the
key components in the computational workflow is evaluated
during hypergraph analysis and learning. The hyperparameters
adaptivity during hypergraph learning is also assessed. Finally,
two case studies are presented to showcase the potential of
Easyhypergraph in hypergraph analysis and hypergraph
learning tasks.

Description of empirical hypergraph datasets. The hypergraph
datasets utilized in our experiments are sourced from real-world
data, with sizes varying from thousands to hundreds of thou-
sands. The detailed statistics of these datasets can be found in
Table 3, with their descriptions provided below:

e PubMed (co-citation) (Yadati et al. 2019) is a dataset
derived from the PubMed database, which is widely used to
capture the higher-order co-citation relationships between
scientific papers. It consists of scientific papers with their
co-citation relationships and contains 19,717 nodes and
7963 hyperedges. A node represents a paper, and a
hyperedge represents a paper set that has cited the same
articles.

e DBLP (co-authorship) (Yadati et al. 2019) is a dataset
derived from the DBLP computer science bibliography,
which is widely used to study the patterns of scientific
collaboration and evolution of the scientific networks. It
consists of researchers with their co-author relationships
and contains 41,302 nodes and 22,363 hyperedges. A node
represents a researcher, and a hyperedge consists of
researchers who collaborate on one paper.

e Yelp (Chien et al. 2022) is a restaurant review network
dataset. Yelp is an American merchant review site where
users can rate and review merchants. This dataset is often
used in studies such as recommender systems and
merchant analysis. It contains 50,758 nodes and 679,302
hyperedges, where a node represents a restaurant, and a
hyperedge is a collection of restaurants visited by the
same user.

e  Walmart-trips (Jprenci et al. 2015) is a retail industry-
related dataset that records consumer transaction data
during shopping at Walmart. This dataset is suitable for

Table 3 Properties of the hypergraph datasets, and we show the number of nodes (No. nodes), the number of hyperedges (No.
hyperedges), the average hyperedge size (Avg. hyperedge size), and the average hyperdegree of the nodes (Avg. hyperdegree),

respectively.

Networks No. nodes No. hyperedges Avg. hyperedge size Avg. hyperdegree
PubMed (co-citation) 19,717 7963 4.47 8.79

DBLP (co-authorship) 41,302 22,363 4.61 2.33

Yelp 50,758 679,302 6.74 88.65
Walmart-trips 88,860 65,979 6.70 5.09
Trivago-clicks 172,738 220,971 3.18 4.06
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analyzing the shopping behavior of customers and the
correlation between products. It contains 88,860 nodes and
65,979 hyperedges. A node represents a product, and a
hyperedge consists of a group of products purchased by a
user at the same time.

e Trivago-clicks (Chodrow et al. 2021) is a hypergraph
dataset derived from Trivago, a popular hotel booking
platform. This dataset records the click behavior of users
when searching for hotels. It typically covers detailed
information about user interactions with the platform and
can be used for user behavior analysis and ad click
prediction. It contains 172,738 nodes and 220,971 hyper-
edges. A node stands for a lodging option, while a
hyperedge indicates a group of lodgings that were clicked
on in the same browsing session.

Experiment settings. All comparison experiments are conducted
on two Linux servers, each with an Intel(R) Xeon(R) CPU E5-
2690 v2 @ 3.00GHz and 31 GB of RAM for the metrics compu-
tation. Also, we used one server with an Intel(R) Xeon(R) Silver
4114 CPU @ 2.20GHz and 187GB of RAM for HNNs training.
The version of HNX is 2.1.3, XGI is 0.8.2, and DHG is 0.9.4.
We select three typical state-of-the-art baseline libraries for
comparison. For hypergraph analysis, we choose HNX and XGI.
Also, DHG is used for hypergraph learning. They cover a number
of functions which are widely used, and consistent functions for
more fair efficiency comparison of hypergraph analysis or
hypergraph learning (Gao et al. 2022a; Mancastroppa et al. 2023).

Effectiveness analysis. To further demonstrate the effectiveness
of the design of computational workflow, we investigated the
implementations of EasyHypergraph, HNX, and XGI. Firstly, all
libraries realize the significance of vectorization, and fundamental
implementation relies on the NumPy library (Harris et al. 2020).
However, compared with HNX and XGI, EasyHypergraph does
not initialize the node as a hashable object since it is memory
inefficient. Alternatively, Easyhypergraph discretizes the node
into a sequence of node indices, which enables us to conduct
vector operations and adapt to most scenarios of hypergraph
analysis. Secondly, since we identified the incidence matrix as a
basic property, its optimization benefits the calculation of
advanced properties. Thirdly, the incidence matrix is normally
stored in a sparse format because it can alleviate memory pressure
to a great extent by only storing non-zero elements. CSR
(Compressed Sparse Row) and COO (Coordinate Format) are
two common storage formats for sparse matrices. CSR stores
non-zero values along with their column indices and row poin-
ters, making it memory-efficient for row operations, while COO
stores non-zero values combined with their row and column
indices as triples, which is intuitive but less efficient for compu-
tations. Here, EasyHypergraph chooses the CSR format as the
first option based on the structural characteristics of the incidence
matrix, while HNX and XGI overlook it and only consider COO.

Although sparse storage formats can reduce the space required
for matrix storage, no work has been done to discuss the optimal
storage format for hypergraph computing scenarios. Therefore, we
take a data-driven approach to analyze the relevant features of the
properties of hypergraphs in order to show convincing evidence
for a suitable format and as a complementary explanation of our
choice of CSR format in the computational workflow. Precisely,
we select five typical hypergraph datasets in Table 3 to analyze the
Gini index of row/column sparsity of the incidence matrix shown
in Fig. 4. The Gini index is generally used as an indicator of the
income disparity of the population, with a value range between 0
and 1. When it is greater than or equal to 0.4, it is generally

considered to be a country with a large income disparity between
the population of that country. The Gini index on the sparsity of
each row/column can reflect the degree of unevenness in the
sparsity of the matrix. For instance, the larger Gini index on the
sparsity of the rows means that some rows of the matrix contain a
large number of non-zero elements while other rows have almost
none, which suggests that there is a significant inhomogeneity in
the data distribution. In particular, we construct the correspond-
ing hypergraph and compute the incidence matrix. Subsequently,
two arrays are calculated separately, the first containing the ratio
of non-zero elements in all rows of the incidence matrix, which we
refer to here as the row sparsity. The second contains the ratio of
non-zero elements in all columns, which we refer to here as the
column sparsity. Finally, the Gini index is calculated for each of
these two sparsity arrays separately.

From the left of Fig. 4(a—e), we can observe that the Gini index
values of row sparsity of the incidence matrices corresponding to
the four datasets, i.e., PubMed (co-citation), Yelp, Walmart-trips,
and Trivago-clicks, are all over 0.4. It indicates that the
differences in the distributions of the number of row elements
are large, whereas the Gini index of column sparsity is over 0.4,
suggesting that the differences in the distribution of the number
of row elements are large. Although the general column sparsity
Gini index value is lower, the column sparsity Gini index value of
the Yelp dataset exceeds 0.5. It can reflect that the variance of the
hyperedge sizes of this dataset is larger, and so is the difference in
the number of nonzero elements in each column. On the
contrary, the row/column sparsity of the DBLP (co-authorship)
dataset does not show obvious inhomogeneity. The Gini index
value of column sparsity in this dataset is larger than the Gini
index value of row sparsity, which indicates that the number of
non-zero elements in the columns of this hypergraph incidence
matrix is more uneven.

According to the above analysis, most of the datasets exhibit
uneven row sparsity. Considering that hypergraph learning
involves a large number of matrix multiplication operations,
i.e., there will be more demand for row operations. Thus, the CSR
format is more suitable for such row operation-intensive
scenarios than the COO format. Not only that, the use of CSR
format as a storage format facilitates the full use of the locality
principle in computers to optimize the memory access pattern (Li
et al. 2013). This enables fast access to the non-zero elements of a
row when performing row-based operations in hypergraph
learning, reducing the extra overhead caused by cache misses.

Moreover, given the essential information required by the CSR
format (Zhao et al. 2018), it is crucial to consider basic storage
budgets. According to the definition of CSR format, m represents
the number of nodes, n represents the number of hyperedges, and
nnz indicates the number of non-zero elements (Kanakagiri and
Solomonik, 2024; Ramamoorthy et al. 2024). The CSR’s
capabilities can be maximized when the inequality (6) holds:

nnz+nnz4+m-41<mxn,

= 2xnnz<mxn—m—1,

(6)

= 2xnnz<mx(n—1)—1,
= nnz< 7'”("2_”_1.
The smaller the nnz is in the inequality, the more storage memory
the CSR format can save when storing the original matrix.
Then, inspired by the aforementioned results, we further select
the same five empirical hypergraph datasets and depict their
distribution of hyperdegree. The results are shown in the right
part of Fig. 4(a-e). The y-axis indicates the frequency of the
occurrence of each hyperdegree value. These observations imply
that most nodes have a relatively low degree, resulting in
relatively few non-zero elements in the incidence matrix.
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Fig. 5 Comparisons for metrics computational efficiency and memory utilization on four hypergraph analysis metrics. a-d Shows the comparison for
metrics computational efficiency and memory utilization on incidence matrix, hyperdegree, neighbor, and distance, respectively. e Demonstrates the
comparison for maximal memory consumption of each library for computing the incidence matrix.

However, we also notice that the hyperdegree distribution of the
Yelp dataset is denser in the middle range, which might degrade
the performance brought from the CSR format. To overcome this
problem, we adopt a heuristic method by fusing CSR and COO
formats into our implementation of hypergraph learning, which
enables us to effectively combine the flexibility of COO with the
computational efficiency of CSR.

Performance evaluation for hypergraph analysis. The compared
metrics include the incidence matrix, hyperdegree, node neigh-
bors, and distance, respectively. Figure 5(a-d) shows the

comparison of both time and memory cost of metrics imple-
mented by EasyHypergraph and other libraries among different
datasets. The results demonstrate that EasyHypergraph always
outperforms HNX and XGI in computational efficiency and
memory utilization when calculating the four metrics.

In terms of computational efficiency, the speedup ratios for the
incidence matrix range from 2.64 to 153.16. Furthermore, it
significantly outperforms HNX and XGI when calculating
hyperdegree and distance, with speedup ratios reaching up to
several orders of magnitude (e.g., tens of thousands) in optimal
cases. This performance advantage becomes even more
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pronounced for large-scale hypergraphs. This performance gap
can be attributed to the metrics calculation algorithms designed
by XGI and HNX. The execution time of their designed
algorithms is linearly proportional to the hypergraph size. There,
when the scale of the input hypergraph exceeds ten thousand, the
performance of the algorithms will be significantly reduced.
However, the proposed preloading and caching mechanisms in
our optimization workflow effectively address this issue. The only
exception is the computation of neighbors, where XGI outper-
forms our library by 0.03s and 0.11s for DBLP (co-authorship)
and Trivago-clicks, respectively. A potential reason for this is that
since EasyHypergraph computes neighbors through the hyper-
graph adjacency matrix, it will take more time to compute some
nodes that have more neighbors.

In terms of memory utilization, as shown in Fig. 5(a-d),
EasyHypergraph reduces memory usage by 46.1% in the best case
when calculating the incidence matrix, and by 50.8% in the best
case when calculating the hyperdegree. Since the memory usage
during the metrics computation is dynamic, here we also take the
incidence matrix as an example. Figure 5(e) shows the maximum
memory consumption during the process of the incidence matrix
computation between EasyHypergraph and the other baseline
libraries. The results show that compared to the other libraries,
EasyHypergraph saves 25.3% of memory usage in the best
scenario while saving an average of 13.5% of memory space across
all datasets. Generally, HNX and XGI consume more memory
than EasyHypergraph, as EasyHypergraph discretizes nodes into
integers, while HNX and XGI store them as more complex
Python objects. Besides, we also notice that EasyHypergraph’s
memory consumption rises gently with the increase of the
dataset, which indicates that it has a more obvious advantage in
terms of scalability. Finally, we discover that EasyHypergraph
costs more memory than XGI when calculating distances in Fig.
5(d). When calculating distances, EasyHypergraph will conduct
clique expansion on the hypergraph and transform it into a
simple graph to accelerate the calculation process, which will not
affect the results. In the worst case, this algorithm will consume
17.5% more memory space than XGI. However, in the process of
calculating distance metrics, XGI retrieves the nearest node with a
linear time complexity. In contrast, we employ a more efficient
min-heap structure to reduce the time complexity to the
logarithmic level, with acceleration as fast as 4.09 times.

Finally, we further demonstrate the efficiency of each part in
our computational workflow for hypergraph analysis. The
demonstration is carried out by taking the calculation of the
incidence matrix as an example in Fig. 7(a). We can see that if we
remove the cache part or the preloading part, the performance
degrades. The reason behind this occurrence is that we preload
the edge index while constructing the hypergraph, and also the
index of the initial non-zero element in every row. Therefore, the
time spent in constructing the incidence matrix has notably
decreased. Compared with the traditional approach of calculating
the incidence matrix by repeating double nested loops, our
computational workflow minimizes the repetitive computation of
the sparse matrix by designing cache storage.

Performance evaluation for hypergraph learning. To evaluate
the benefits of the computational workflow in hypergraph
learning, we have chosen six representative HNN, i.e.,, HGNN,
HGNNT, HNHN, HyperGCN, UniGCN, and UniGAT, that have
demonstrated their effectiveness in previous studies. The results
in Fig. 6 show that we are better than the DHG with a notable
increase in most hypergraphs. As the scale of datasets increases,
we could achieve a greater enhancement. The time required for
the HGNN model training can save up to about 70.37% of

12

computation time compared with DHG on the Trivago-clicks
dataset. More data can be found in Supplementary Table S1 and
Supplementary Table S2. The main deficiency of DHG ignores
the features of the intermediate matrices during hypergraph
computation, only considering the COO sparse storage format.
Nevertheless, EasyHypergraph not only explores these imper-
ceptible features but also proposes to prioritize the CSR format
and fuse the flexibility of the COO format.

Subsequently, we further investigate the COO and demonstrate
the superiority of CSR over COO. Firstly, we construct the
incidence matrix in different storage formats. Figure 7(b)
illustrates the improvement in maximal memory savings.
Specifically, compared with the dense format, the sparse format
mitigates out-of-memory issues and maximizes the utilization of
limited memory resources. Compared with the COO format, the
CSR format can achieve a better memory saving, about 2.8% at
most. Then, we conduct a similar comparison during the
hypergraph learning task. The experimental results are shown
in Fig. 7(c-h). All of these HNNs gain acceleration on training
time, and the superiority of CSR becomes evident during the
training of these HNNs. In addition, we observe that HGNN
exhibits a more notable improvement than other HNNs, because
HGNN depends on more SpMV operations, which means it is
more sensitive to the design of the matrix sparse storage strategy.
More data can be found in Supplementary Table S3 and
Supplementary Table S4. Furthermore, we would like to discuss
the impact of hyperparameters on HGNN training. We can see in
Fig. 7(i-n) that our computational workflow on HGNN does not
introduce additional computational fluctuation and maintains a
stable performance under different hyperparameter settings.
However, DHG shows a notable growth trend as the size of the
hidden layer increases. The main challenge lies in the positive
correlation between the hidden size and the number of matrix
rows in the neural network, combined with the fact that the COO
format used by DHG does not support efficient random row
access.

Case studies. To demonstrate the usefulness of EasyHypergraph
in social science, we conduct two case studies combined with
hypergraph analysis and learning, which is shown in Fig. 8. For
hypergraph analysis, we employ two congressional committee
datasets, the House-committees dataset (1290 nodes, 341 hyper-
edges) and Senate-committees dataset (282 nodes, 315 hyper-
edges), which can be used to study political collaboration patterns
(Chodrow et al. 2021; Mancastroppa et al. 2023). Each member in
these datasets comes from the US House of Representatives or the
US Senate and is represented as a node. At the same time,
hyperedges are formed by members who jointly serve on the same
congressional committee during the relevant congressional term
(103rd-114th Congresses, 1993-2017) (Chodrow et al. 2021).
Besides, all members have labels indicating the party to which
they belong. The ratio of Democrats to Republicans in House-
committees is 620:670, while the ratio in Senate-committees is
140:142.

In Fig. 8(a-f), we adopt metrics or algorithms from Easy-
Hypergraph’s hypergraph analysis module, including hyperde-
gree, hyperedge degree, cycle ratio, hypercoreness, s-closeness, s-
betweenness, and the Chung-Lu generative model. By analyzing
the results, we have the following observations:

e In Fig. 8(a, b), we discover that nodes belong to more
committees in the Senate of Representatives than in the
House of Representatives by observing the cumulative
frequency of hyperdegree. Meanwhile, compared with the
Senate committee, the number of members in each House
committee is larger. By combining these two indicators, we
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Fig. 6 Comparisons of hypergraph learning efficiency on different hypergraph datasets. The average training time (s) of 100 epochs of a HGNN,
b HGNN, ¢ HNHN, d HyperGCN, e UniGCN, f UniGAT.

can deduce that the participation of members in Senate
committees may be more diverse, and each committee has
smaller gaps in the number of people, while the House
committees show the opposite phenomenon. The potential
reasons might be due to the operation mechanism and
missions of the two kinds of committees.

In Fig. 8(c, d), we apply two node ranking metrics
(including cycle ratio and hypercoreness) to quantify the
node influence in the two datasets. First, the two datasets
show similar trends in cycle ratios, which implies that their
committee compositions are structurally similar to some
extent. Then, we calculate the percentage of members of
both parties by filtering out nodes with cycle ratios below
the average. The results show that at this point, members of
both parties account for a similar percentage of the two

datasets, but Republican members have a higher chance of
occupying a more important position in the House
committees. Second, using a scatterplot, we examine the
distribution of node hypercoreness values and observe that
Republican legislators’ hypercoreness values cluster in two
distinct intervals: [0.9, 0.7] and [0.6, 0.2]. Although the
nodes of the Democratic Party show similar clusters, their
nodes below 0.2 are more than the Republican Party. This
phenomenon also confirms the discovery in cycle ratio
comparison, that more influential Republican members are
in each committee.

In Fig. 8(e), we preserve different interaction sizes
(hyperedges with at least a certain number of nodes) to
show the Spearman correlation coefficient of s-closeness
and s-betweenness of two datasets. For the sake of brevity,
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Fig. 8 Two case studies for hypergraph analysis and hypergraph learning on real-world datasets. a-f Hypergraph analysis on House-committees and
Senate-committees datasets. a The cumulative frequency of hyperdegree. b The frequency of hyperedge degree. ¢ The frequency of cycle ratio and the
percentage of members from Democrat or Republican beyond the average cycle ratio. d The distributions of hypercoreness value and corresponding
political party affiliation of members. e The Spearman correlation coefficient between s-closeness and s-betweenness across different interaction sizes.
f The cumulative frequency of s-closeness (s = 1) of original hypergraph and generative hypergraph. The generative hypergraph is generated by the Chung-
Lu model. g, h Node classification on co-citation Cora and co-citation CiteSeer datasets by training hypergraph learning models.

we will refer to this as p. Although s-closeness and
s-betweenness are both used to rank hyperedges, they focus
on global importance and local importance, respectively. In
particular, s-closeness reflects the distance between the
target hyperedge and all other hyperedges, while
s-betweenness calculates how many times that target
hyperedge serves as the bridge. We notice that p shows
an opposite trend on the two datasets. This phenomenon
indicates that as the scale of interaction size increases, the
hypergraph of House committees may exhibit a structure
with more hub hyperedges and bridge hyperedges, while
the hypergraph of Senate committees may separate into
more connected communities or become more compact.

As shown in Fig. 8(f), by specifying the node degrees and
hyperedge degrees, the Chung-Lu model we implemented
can generate a hypergraph that shows a similar s-closeness
centrality distribution to the original hypergraph. Research-
ers are facilitated to characterize topological statistics by
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treating them as a reference (Zeng et al. 2023). In the
future, researchers can also consider it as a benchmark and
evaluate their proposed hypergraph null model.

For hypergraph learning, we employ two widely used co-
citation datasets, including Cora (2708 nodes, 1579 hyperedges)
(Yadati et al. 2019) and CiteSeer (3312 nodes, 1079 hyperedges)
(Sen et al. 2008). Cora consists of 2708 scientific publications
classified into one of seven fields, while CiteSeer consists of
3312 scientific publications classified into one of six. The co-
citation hyperedge is formed between several papers when
another article cites them simultaneously. Here, the primary task
is to conduct multi-class node classification. We can further
compare their learning performance by training a graph
convolution network (GCN) and our implemented HNNs. We
set the hidden size as 64, the learning rate as 0.01, and the weight
decay as 0.0005. After 200 rounds of training, we visualize the
low-dimensional node embedding by the t-SNE algorithm (Van
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der Maaten and Hinton, 2008) and show their training
performance in Fig. 8(g, h). As shown in the results, the node
representations of HNN's exhibit more distinct classification and
clearer class boundaries after visualization. Meanwhile, most
HNNs surpass GCN in accuracy, precision, and recall, with
precision showing the most significant improvement of up to 2%.
Such improvement also demonstrates the effectiveness of HNNs
when performing node classification tasks, and users might
unlock their potential in the broader social sciences.

In summary, EasyHypergraph is able to complement the
deficiency of simple graphs in modeling higher-order relation-
ships. Moreover, EasyHypergraph could help social science
researchers propose new research questions and explore the
deeper triggers of certain patterns in higher-order networks.
Gaining insight from the target network is also critical for
researchers and practitioners to predict objective properties or
behaviors by HNNs, such as predicting market behavior
(Batrancea et al. 2024; Ma et al. 2022; Sawhney et al. 2020) and
user behavior in social networks (Guo et al. 2025; Han et al. 2023).

Discussion

This paper studies the design and optimization of a hypergraph
computation library for researchers and practitioners from mul-
tiple disciplines. Although several libraries have tried to meet the
users’ need for hypergraph analysis or learning, these libraries
failed to support them in a unified framework and lack optimi-
zation for computation speed or memory consumption. More
importantly, the existing research gaps cause unnecessary costs in
terms of time, resources, and development. To fill existing
research gaps, this paper proposes a unified hypergraph compu-
tation library named EasyHypergraph for both of them, as well as
an efficient computational workflow.

Although the existing libraries have a certain degree of user-
friendliness in the construction of hypergraphs, they also have the
problems of tedious design and insufficient performance. First, in
the existing hypergraph analysis libraries, the code design at the
node level or the hyperedge level involves more complex nesting
within the hypergraph class. It reduces the readability of the code,
making developers difficult to track the flow of data in the process
of hypergraph construction or metrics computation. Second, the
process of constructing a hypergraph generates more inter-
mediate results or Python objects in memory, which generates
memory overheads that will be overloaded by the general com-
putational resources as the size of the hypergraph increases.
Finally, existing hypergraph analysis libraries do not fully utilize
the structural information of the hypergraph, which generates a
large number of redundant computations in the process of
hypergraph metrics calculation and reduces the efficiency of
hypergraph-related computation. EasyHypergraph eliminates the
management of original node mapping by discretizing the node
into a sequence of continuous node indexes. Therefore, Easy-
hypergraph not only ensures the availability of hypergraph ana-
lysis but also meets the need of hypergraph learning since it is
compatible with vector operations. Based on the hypergraph class,
users can manipulate hypergraph structure with different gran-
ularity and utilize the functions in modules, including hypergraph
analysis, hypergraph learning, and hypergraph visualization.

To accelerate the hypergraph analysis and hypergraph learning
and increase their memory utilization, this paper designs and
implements an efficient computational workflow. Firstly, we
divide the hypergraph properties into basic properties (e.g.,
incidence matrix and hyperdegree) and advanced properties (e.g.,
adjacency matrix and hypergraph Laplacian matrix). They are
interconnecting properties and strongly related to the computa-
tion of the underlying hypergraph structure, which indicates that

16

optimization on them will bring a general improvement for more
complicated metrics computation or model training. To imple-
ment the optimization, we develop three key mechanisms: loop
fusion and preloading for basic properties and cache for both
basic properties and advanced properties, each contributing to the
enhancement of computational efficiency. Additionally, this
paper utilizes five representative hypergraph datasets and ana-
lyzes them from two perspectives, namely, sparsity and power law
characteristics. Firstly, we define the sparsity of each row and
column of the incidence matrix and calculate the Gini index of
the two indicators. We observe that the row sparsity of most of
the incidence matrices is uneven, while the Gini index of the
column sparsity is lower, which reflects that most of the incidence
matrices have larger differences in the distributions of the rows.
Therefore, combining the above analysis with the background
that the process of hypergraph learning involves a large number
of matrix multiplication operations, we believe that it is suitable
for the preferred CSR sparse storage format. However, the CSR
format might be affected by the layout of non-zero elements,
which inspires us to develop a heuristic sparse storage format
selection strategy. This strategy combines the effectiveness of the
CSR format and the flexibility of the COO format, improving the
overall memory efficiency while maintaining computational
performance. By conducting experiments on the above five
typical hypergraph datasets and comparing them with three state-
of-the-art hypergraph computation libraries, EasyHypergraph
outperforms its baselines in terms of the compared metrics. The
average speedup ratio on all calculations could reach 11,155. For
memory usage, EasyHypergraph saves memory by up to 54.28%
and 44.17% for the incidence matrix. Meanwhile, our imple-
mentation of the HGNN model achieves up to a 70.37% reduc-
tion in training time compared with DHG when the data size
exceeds hundreds of thousands.

Limitations and future works. Despite offering a wider range of
functions and being more efficient than existing hypergraph
libraries, EasyHypergraph still has some limitations. Firstly, motif
detection algorithms on simple graphs are mature, but there is no
unified definition of motif detection on hypergraphs in academia.
Currently, EasyHypergraph supports projecting hypergraphs into
simple graphs and utilizing the algorithms in EasyGraph for
detection. However, this approach might be a barrier to capturing
higher-order interaction patterns in the hypergraph, limiting the
depth of hypergraph analysis. A similar situation occurs in the
process of using community discovery algorithms, indicating that
our support for some important hypergraph analysis algorithms
still needs to be improved. Secondly, although real-world net-
works (e.g., social networks) are mostly highly sparse, the need for
users who might deal with dense matrices cannot be ignored.
Currently, EasyHypergraph has not fully considered the man-
agement of dense matrices. In dense matrices, due to the large
number of non-zero elements in each row, the index storing and
searching overhead of the CSR format increases significantly,
resulting in performance degradation and affecting the user
experience. Thirdly, the current developer-dependent division of
basic and advanced properties in computational workflows may
result in sub-optimal hypergraph property computations.

To overcome existing limitations, the first potential future
direction is to investigate a method that can minimize the error
when we have to project the hypergraph to a graph for
target algorithms. Besides, EasyHypergraph will integrate represen-
tative motif detection algorithms in the future. Secondly, Easy-
Hypergraph will not only consider dense matrix management but
also set a goal to create a machine learning model that can
dynamically adopt the best storage format based on the structural
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features of hypergraphs to further improve the efficiency of
hypergraph analysis and hypergraph learning. Thirdly, designing
an automated method for identifying basic and advanced properties
is one of the feasible ways in future work. For example, a static
analysis tool can identify high-frequency code segments in the
hypergraph computation, which can help developers make more
reasonable optimization decisions.

The future development of EasyHypergraph is aimed at evolving
EasyHypergraph into a cross-disciplinary research tool that bridges
gaps between hypergraph theory and practice. The first is functional
versatility. Given a large number of open problems in the field of
higher-order networks, emerging hypergraph algorithms will be
integrated into EasyHypergraph in the future, giving users a richer
perspective on hypergraph analysis. In the meantime, EasyHyper-
graph will continue to expand access to hypergraph datasets to
include not only social networks but also higher-order networks in
other areas such as chemistry and biology. From the perspective of
technological innovation, the training time of different HNNs might
vary on different types of hardware. To minimize the performance
uncertainty introduced by hardware, in the future, deep learning
compilers could be considered to convert these models from high-
level representations to executable code that can run efficiently on
specific hardware. Finally, the documentation and tutorials of
EasyHypergraph will be further improved to enhance the user
experience and reduce the learning costs.

Conclusion

Higher-order networks are increasingly being studied for its
ability to represent relationships among numerous entities (Li
et al. 2024b). Hypergraph, as a representative kind of higher-
order network, has been used as a powerful tool to reveal higher-
order relationships in different disciplines. While the existing
hypergraph computation libraries like HNX, XGI, and DHG have
facilitated hypergraph-related analysis and learning tasks, they are
deficient in functional comprehensiveness and computational
efficiency. To this end, this paper designs and implements
EasyHypergraph, a unified library that supports hypergraph
analysis and hypergraph learning simultaneously and achieves
fast speed and efficient memory utilization. By conducting com-
putational experiments, EasyHypergraph demonstrates its fast
speed that could reduce the computation time from XGI and
HNX by a large margin for hypergraph analysis, with average
speedup ratios on all compared metrics calculations reaching
11,155. In addition, for hypergraph learning, EasyHypergraph can
save about 70.37% of computation time for HGNN training on
datasets with hundreds of thousands of nodes. Finally, Easy-
Hypergraph shows its capability by conducting case studies on
four real-world datasets related to political science and co-citation
relationships for hypergraph analysis and hypergraph learning,
respectively.

Data availability

The datasets used for the current study are available via https://
github.com/easy-graph/EasyHypergraph_benchmark/. Source code
and package installation instructions can be found in the https://
easy-graph.github.io/docs/hypergraph.html.
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